
A MULTIPROCESSOR SYSTEM DESIGN
Melvin E. Conway

Directorate of Computers, USAF
L. G. Hanscom Field

Bedford, Mass.

INTRODUCTION

Parallel processing is not so mysterious a
concept as the dearth of algorithms which ex­
plicitly use it might suggest. As a rule of thumb,
if N processes are performed and the outcome
is independent of the order in which their steps
are executed, provided that within each process
the order of steps is preserved, then any or all
of the processes can be performed simultane­
ously, if conflicts arising from multiple access
to common storage can be resolved. All the ele­
ments of a matrix sum may be evaluated in
parallel. The itk summand of all elements of a
matrix product may be computed simultane­
ously. In an internal merge sort all strings in
any pass may be created at the same time. All
the coroutines of a separable program l may be
run concurrently.

The problem is not so much finding proce­
dures employing parallelism as it is finding
computer systems which could handle the pro­
cedures without undue preplanning. A desirable
system which flexibly accommodates a collection
of identical, concurrently operating sequential
processors should exhibit the following proper­
ties.

1. At every point in time the number of
active processors should be the minimum
of the number of processors in the system
and the number of parallel paths in the
program at that time.

2. If insufficient processors are available,

lR9

program paths specified to be parallel
should be e~ecuted serially.

3. Although the coder must specify all paral­
lelism, he should have little concern about
the number of processors in the system at
execution time.

4. The means of specifying parallelism
should be simply coded and rapidly han­
dled by the system so that for highly
parallel programs the processing time is
inversely proportional to the number of
p~ocessors, subject to the boundary con­
dition that a one-processor system would
run only slightly faster if the specifica­
tions of parallelism were removed from
the program.

In short, a system which accommodates pro­
grams with parallel paths by means of a plural­
ity of sequential computing elements should be
dynamically self-scheduling. This paper sug­
gests a design for such a system.

SPECIFYING PARALLELISM

Because a procedure can be thought of as
originating at one point in its flowchart, all
parallelism is the result of forks in flowchart
paths. Figure 1 provides a convention for
specifying such forks. Hereinafter, the word
fork will have the meaning suggested by Figure
1. Parallel paths may rejoin at a join. A con­
vention for drawing joins is also given in Fig­
ure 1.

140 PROCEEDINGS~FALL JOINT COMPUTER CONFERENCE, 1963

Figure 1. Conventions for drawing fork and join.

The fork and join in flowcharts have their
counterparts in the FORK and JOIN instruc­
tions which are added to the instruction set of
the system. * FORK is simply an instrudion
with two successors. It is written and acts like
a branch instruction. However, if location 100
contains a FORK 200 instruction, then instruc­
tions at 200 and at 101 will be subsequently
executed. The execution of a FORK instruction
calls another processor into activity, if it is
available. Notice that FORK has an associa­
tivity property; N parallel paths may be spec­
ified equally well by many possible arrange­
ments of N-1 forks.

The JOIN, which is, in effect, the reverse of
the FORK, has a vital additional job: it waits.
In Figure 1, box C must not be begun until
boxes A and B are completed. Assume that
the coding for box A runs from location 101
through 105, that the coding for box Bruns
from 200 through 219, and that the coding for
box C begins at 300. After the FORK at 100
is executed two processors are called to partici­
pate; one executes five instructions from 101
to 105, the other executes twenty instructions
from 200 to 219. The processor finishing first,

* The fork-join notion has been around for a while.
The equivalent of FORK is elsewhere given these
names: in CL-II2 and the Burroughs D825 AOSP3,
BRANCH· in the GAMMA 604, SIMU; in a conceptual
rna. chine 'discussed bv Richards5, BRT (Branch - - --- .. ,

Transfer) .

say at 105, should be released; the one finishing
last then simply branches to 300.

In the case of an N-ary fork the only proc­
essor with a distinguished role is the one which
finishes last, for it is the one which must
branch. All others are released. If the N proc­
essors are operating independently, how does
each know whether it is last to finish? Return­
ing to the example, the information required
to notify the last processor is available in the
form of a counter at location 299. The FORK
at 100 sets the counter to 2. Each processor,
when it comes to the end of its parallel path,
decrements the counter by one. The processor
which produces zero as a result knows that
it is last to finish. There are two JOIN in­
structions, at 106 and 220. Each one reads:
JOIN 299. This means, "Decrement the counter
at 299 by one. If the result is zero branch to
299 + 1. Otherwise release this processor."
The FORK at 100 reads: FORK 200, 299, 2.
This means, "Set the content.s of 299 to 2.
Then fork to 101 and 200."

If location 500 began a four-way fork to 503,
520, 540, and 560, all to recombine at a counter
(called the junction) at 600, the coding would
be thus:

500: FORK 520, 600, 4
501: FORK 540
502: FORK 560

This illustrates that a second kind of FORK is
necessary. It forks but does not affect the
junction.

So far we have described three new instruc­
tions peculiar to the system being developed.
Here are two more. The first is a variation of
JOIN which, instead of releasing its processor
if it is not on the last path to finish, keeps it to
do busy work. It reads: JOIN J, B and means,
"Branch to B if something which ends up at J
is still going on. Otherwise, JOIN J." It acts
as follows. The counter at J is removed from
storage and 1 is subtracted. If the result is
nonzero, the original value is returned to J and
a branch to B is executed. If the result is zero,
J is set to zero and a branch to J + 1 is
executed. We .shall see later that this instruc­
tion is a generalization of the ciass of "Branch

Figure 2. A convention for the "Branch to Busy Work"
operation.

on busy I/O device" instructions. Figure 2
suggests a flowchart notation.

The other new instruction adjusts the value
of the junction in the event that the possibility
of execution of a FORK is conditional. It reads:
FORK A, J and means, "Increment the value
at J by one, then FORK A."

In summary, the five following instructions
permit an adequate specification of parallelism:

FORK A, J, N
FORK A, J
FORK A
JOIN J, B
JOIN J

THE STATE WORD

One question which occurs to people thinking
about multiprocessor systems may be stated
thus: How much of the main memory should
be private to each processor and how much
should be "community" storage? The design
to be presented here makes it clearly uneco­
nomical to reserve any of the main memory for
each processor. Indeed, if private storage is
required, it belongs not to each processor but
to each parallel flowchart path. The distinction
between processors and paths is a crucial one;
confusion over this matter seems to be muddy­
ing up much contemporary thinking about
parallel processing. The four criteria stated in

A MULTIPROCESSOR SYSTEM DESIGN 141

the introduction to this paper demand that the
distinction be made. Processors have no iden­
tity of their own. During a computation they
can be swapped, added, or removed without
altering the results of the computation. What
does have an identity of its own is a set of bits
in each processor determining the state of the
processor between instruction executions. This
set of bits is called the state word. The notion
of the state word will now be elucidated.

When the executive routine of a multi pro­
grammed single-processor computing system
takes control from program A and gives it to
program B it establishes an appropriate en­
vironment for the new program by storing all
the processor registers used by program A in
an area reserved for that program, and loading
these registers from a similar area for program
B. The content of such a reserved area pre­
serves the state of a program at the time it is
taken off the processor so that the same pro­
gram can be later returned to the processor
without any disturbance to the computation
as a result of the interruption. We may call
the content of a program's reserved area the
state word for that program. Normally, a state
word consists of at least an address (the se­
quence counter), and generally includes several
arithmetic and index registers and a few indi­
cator bits. We may call the aggregation of all
the reserved areas for holding state words of
inactive programs the control memory.

When the state word is loaded into the proc­
essor from control memory it occupies a set of
storage positions the aggregation of which we
might call the processor's state register. Thus,
switching control from program A to program
B may be conceptualized as a sequence of two
processor operations: store state register into
program A area in control memory; load state
register from program B area in control
memory.

When n programs share a common memory
and a single processor the scheduling function
consists of choosing the time intervals during
which each of the n state words will occupy the
single state register. This description of the
scheduling function as a resource allocation
can be generalized to the case wherein n pro­
grams share a common memory which is equally

142 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1963

accessible to k identical processors: the sched­
uler attempts to optimize, according to some
value scheme, the time-·allocation of n state
words to k state registers.

Consider a system with k processors, where
k > 2. To take advantage of the potential over­
all speed increase wit-hout paying for state word
transfer time we must build k flow paths, one
for each processor, each capable of simultane­
ous operation between its processor and control
memory. Ignoring timing restrictions in the
control and main memories, we can see that
for 1 < k < n, where n is the number of state­
words- (presumed fixed), the system speed
(number of standard instructions executed per
unit time) is proportional to k. For n < k the
system speed is constant.

In real life, of course, k is fixed and n varies
with the amount of parallelism in the total sys­
tem at any given time. What varies n? The
FORK and JOIN instructions. FORK makes
two state words from one, and JOIN (except
the last one executed, for which the junction
becomes zero) makes state words disappear.
This suggests an easily implemented processor
allocation algorithm: a processor executing a
FORK sends one state word to control memory;
one executing a JOIN halts until it receives
a new state word from control memory.
Richards6 has shown that when the control
memory is a single queue and when halted
processors are given state words as soon as
they are available, the allocation is not opti­
mum in the sense of minimizing total execution
time or maximizing processor duty cycle.

Figure 3 shows the system configuration as
derived so far. Notice that there are two in­
formation subsystems. The control subsystem

CONTROL

MEMORY

MAIN

MEMORY

Figure 3. A tentatiVe system configuration.

circulates state words, and the program sub­
system shuttles instructions and operands back
and forth. Note also that the only time that a
channel between a processor and the control
memory need be busy is after the processor
executes a FORK or JOIN.

This design is so far unsatisfactory because
serious flow bottlenecks can be expected at the
two memories unless precautions are taken to
avoid them.

Before we address this difficulty some ob$er­
vations are in order. First, notice that the
FORK-JOIN approach provides no justification
for distinguishing between parallelism within
a program and parallelism between programs.
The difference between simultaneous multi­
programming and a parallel algorithm is simply
the position of the FORK instruction. This
observation raises the hope that executive pro­
grams for a system of this sort will not be
complicated by the parallel structure and may
even be simplified by it.

Second, we might contemplate the role of the
interrupt in this system. To rephrase the words
of Buchholz7 and others, interrupts have two
distinct functions. The internal interrupt is
triggered by the execution of a particular in­
struction and demands the insertion of a por­
tion of code immediately following completion
of this instruction. Overflow, divide check, and
invalid address alarms exemplify the internal
interrupt. The external interrupt is triggered
by an external event not closely timed to the
instruction currently being executed and which
demands execution of a portion of code not
necessarily related to the code being executed at
interrupt time. The I/O operation complete
and time clock interrupts are examples of this
type.

External interrupts came into popular use
when concurrent, program-controlled I/O was
introduced. They attempted to control sequenc­
ing of parallel operations in a basically serial
system. Because the code activated by an ex­
ternal interrupt could be executed in parallel
with the code which is active at the time of
interrupt (see the rule of thumb in the intro­
duction to this paper), one might expect the
handling of external interrupts to be different

in the proposed system. In fact, external inter­
rupts are unnecessary. Consider that an I/O
instruction is simply a very lengthly one which
may be executed in parallel with other code,
such as computation and editing. Then simply
precede it with a FORK and follow it with a
JOIN, and all the functions of external inter­
rupts are accounted for in a much more elegant
manner. I t is now seen how the "Branch to
Busy Work" variation of the JOIN can be used
as an I/O activity test.

Here is the first concrete illustration that the
present structure simplifies executive program­
ming. The elimination of the external inter­
rupt provides simpler handling of interrupts
for two reasons.
1. There are fewer interrupts to process and
they all permit similar handling.
2. Internal interrupts are simpler to process
because they are known not to occur at random.
In particular, the routines processing internal
interrupts can control further occurrences of
interrupts during their durations.

While we are on the subject of simplification
of the executive function, we might note that
the extensive use of hard ware in the processor
allocation function can greatly simplify the
executive program in comparison to a conven­
tional multiprocessor system. Also, processor
allocation in hardware helps make feasible goal
number 4 stated in the Introduction.

The third observation we can make is that at
any point in time during a computation there
is no particular distribution of programs on the
set of processors. Furthermore, observing the
time history of any single processor reveals no
particular sequence of programs or paths being
serviced by that processor. This makes the
problem of logging system usage by each pro­
gram a nontrivial one for the system being
discussed. This apparent anarchy also suggests
that storage protection among programs might
be hopeless; it will be seen that this is not the
case.

Finally, we observe that with appropriate
relief of certain bottlenecks in the system and
with a certain class of highly parallel compu­
tations it may actually make sense to talk about
speeding up the system by adding processors~.

A MULTIPROCESSOR SYSTEM DESIGN 143

The next two sections will attempt to show that
the principal bottlenecks or the system are not
essential. That is, they can be designed wide
enough to match any prior choice of memory
size and number of processors.

THE STORAGE SUBSYSTEM

In a system of the type being considered,
particularly if its application involves servicing
many independent programs, three problems
related to the high-speed storage arise.
1. Complete storage protection must be in­
corporated in order to isolate the several pro­
grams.
2. Scavenging and allocation of storage to
newly entering programs should not be an
expensive process.
3. The effective service rate of the memory
should not seriously depreciate the speed in­
crease gained as a result of the addition of
processors.

The first two problems can be solved fairly
straightforwardly. The third problem is the
kind which could keep a system like this from
leaving the drawing board. However, there
seems to be a sizeable class of applications for
which the memory design presented here con­
stitutes a solution to the third problem.

Assume for the sake of discussion that no
individual program would require more than
214 (16,384) words of storage and that the
high-speed memory will never contain more
than 25 (32) programs (including the execu­
tive) at anyone time. All programs will be
coded using a contiguous block of storage be­
ginning at address zero.

When a program enters the high-speed mem­
ory it is assigned a five-bit program number by
the executive. (Let zero be reserved for the
executive program itself.) This program num­
ber is a constant of all state words in that pro­
gram. Clearly then, the storage protection
problem can be solved in principle by providing
219 (524,288) words of storage and addressing
the memory with a 19-bit "system address"
which is a concatenation of the 14-bit address
obtained from the program and the 5-bit pro­
gram number. Such a worst-case design is of
course not economical; there would frequently

144 PROCEEDINGS-F ALL JOINT COMPUTER CONFERENCE, 1963

be large blocks of unused storage in the
memory.

Now assume that the memory is divided up
into small independent modules of, say, 28

(256) words each, such that the high-order 11
bits of a system address specify a module and
the low-order 8 bits specify a word within a
module. Now, instead of being forced to buy
2048 modules, let us elect to buy only 100
modules in a system. If no problem mix requires
more than 25,600 words of storage (assuming
also that no two programs share a module) then
the left hand 11 bits of every meaningful system
address form at most 100 possible module­
selecting combinations. (See Figure 4.) We can

MODULE SELECT WORD SELECT

__ --------~A~--------~_------A~----_
(\I BITS i 8 BITS 1

I SYSTEM ADDRESS 119 BITS) I
I 5 BITS I 14 BITS I
~~ ___________ yr ____________ ~J

PROGRAM NUMBER PROGRAM ADDRESS

Figure 4. Showing the origin and use of th3 19-bit
system address.

then use a 100-word associative memory with
11-bit words to map the upper 11 bits of the.
system address into a module specification. See
Figure 5.

The storage allocation function of the ex­
ecutive consists of writing appropriate words
into the associative memory, thereby assigning
storage modules to programs. Notice that there
is no inherent order or adjacency to the storage
modules, so that scavenging unused modules for
assignment to a new program does not require
moving any existing programs.

In a multiprocessor system each processor
would have its own associative memory, and
conflict resolution would be accomplished by a
switch called the Memory Exchange in Figure
6.

The arrangement of Figure 6 meets the three
storage problems, as explained below.
1. The "system address" notion, together with
the ground rule that no two programs can co­
exist within a moduie, insure that a program
can access only its assigned modules.

SYSTEM ADDRESS

-----..... ---8

100 WORD
LINES

Figure 5. The associative memory selects a storage
module from the eleven high-order bits of the systEm

address.

MEMORY

EXCHANGE

Figure 6. A storage SUbsystem.

STORAGE

~ULES

2. The allocation of storage requires no move­
met of memory conntents, only the simultane­
ous writing in all associative memories of as
many words as there are modules being al­
located.

3. If there is only one problem in the system
and it contains many simultaneous references
to the same module (as might happen with
matrix operations) then this memory system
provides no advantage. The other extreme, in
which the memory is no bottleneck, is that
wherein the systenl contains many serially
coded programs.

A SYSTEM CONFIGURATION

One more major change over the system of
Figure 3 remains to be made: the control and
main memories will be consolidated.

The control memory has the following prop­
erties.

1. It contains logic for queuing state words.
2. Although it is active only when a FORK or
JOIN is being executed, there are brief times
when it might be very busy.

It should also have the following property.
3. The executive should have the facility to
allocate modules from the system "storage pool"
to the control and main memories as required.
In this case the control memory would belong
to program zero, the executive.

The system is made homogenous by isolating
the logic functions of control memory into a
second kind of processor, the control processor
(CP). The control processor has a fixed pro-
gram, presents the same interface to the
memory as an arithmetic processor (AP,
formerly called processor), and provides a
communication path for state words between
AP's and memory. Figure 7 shows the system
configuration. The Dispatcher is a switching
device for connecting AP's and CP's.

Figure 8 shows the flow of state words. Path
A gives the flow of a state word after API
executes a FORK. Path B gives the flow of a
state word after APt executes a nonfinal JOIN.
The system should accommodate a number of
CPs' which will be in balance with the number
of AP's.

EXCHANGE

Figure 7. A more homogeneous system configuration.

A MULTIPROCESSOR SYSTEM DESIGN 145

~------------~
(\
I I

$
I \ ~r:l
I ------l------~

I ®
I ® I \- - -- - - - - - l_ - -1--0

Figure 8. Path of state words.

Finally, an I/O processor (IP) provides a
communication channel to the outside world.
When an AP decodes an I/O instruction it
sends the state word and the decoded instruc­
tion down the Dispatcher to the appropriate
IP. This frees the AP. When the IP finishes
the I/O instruction it sends the state word to
control memory or to an AP. Figure 9 shows
the final system configuration.

SOME PROGRAMMING CONSIDERATIONS

One of the most intriguing aspects of pro­
gramming the system developed here arises
from the possibility that the s·ame section of
code can be executed simultaneously in two
parallel paths. This might happen n2 times in
the addition of two n X n matrices, or it could
happen a small number of times in the simul­
taneous use of the same cosine routine in a
tracking calculation. The usefulness of this
possibility (indeed, the difficulty of avoiding

EXCHANGE

Figure 9. Final system configuration.

146 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1963

it) provides arguments for including index
registers in the state word.

Consider the multiple use of the cosine sub­
routine. The exit address cannot be stored in
a fixed memory location; it could be wiped out
at any time by another call to the subroutine.
A little reflection reveals that if there is any
information unique to the subroutine call at the
time of entrance to the subroutine it is in the
state word. (Consider that the two calls to the
subroutine might be the same instruction.) In
the more general case, consider the subroutine's
use of parameters and temporary storage.
Neither can any of these be in fixed memory
locations. One answer is to stack parameters
(including the exit address) in memory and to
use an index register to point to the stack.
This is not a very good answer , however, be­
cause the stack is not in generallast-in-first-out.
Another possibility which could bear investiga­
tion is the use of control memory for subroutine
parameters.

Now consider the n X n matrix addition. In
a FORTRAN expression of this process the DO
implies serial repetition of the addition coding.
This process could be done in parallel, and so
we arrive at the parallel DO instruction whose
implementation generates n state words, each
with a different value in a specified index
register. When the loop is short the use of a
junction counter to determine the end of the
loop would create a bad traffic jam in the
memory; this and other reasons make the paral­
lel DO instruction impractical in spite of its
appeal. However, if there are enough instruc­
tions in the scope of the loop, it would be justi­
fied to use a DO or simply to loop on a FORK
instruction.

CONCLUDING REMARKS

Fundamental to the concepts presented here
is the principle, not yet commonly accepted, that
parallel paths in a program need not bear fixed
relationships to the processors of a multiproces­
sor system executing that program. In many

applications, if the number of parallel paths
generally exceeds the number of processors,
adding a processor will increase the system's
effective speed. This fact emphasizes that there
are two research objectives whose fulfillment
will render the system design presented here
a practical improvement over the present state
of affairs.
1. A search should be made for parallelism in
commonly used algorithms. The effort of such
a search would be greatly reduced by the addi­
tion of the equivalent of FORK and JOIN to
the common publication languages, for example,
ALGOL.
2. Memories permitting simultaneous access to
any set of words should be developed. As long
as memories are slower than processors, simul­
taneous access is the only alternative to higher
memory speed for increasing overall processing
rates.

REFERENCES

1. CONWAY, M., Design of a Separable Tran­
sition-Diagram Compiler, Comm. ACM 6
(July 1963), p. 396.

2. CHEATHAM, T. E., JR., and LEONARD, G. F.,
An Introduction to the CL-II Program­
ming System, Computer Associates In­
corporated Report No. CA-63-7-SD, Au­
gust 1963.

3. THOMPSON, R., and WILKINSON, J., The
D825 Automatic Operating and Scheduling
Program, Proc. SJCC, 1963, p. 41.

4. DREYFUS, P., Programming on a Concur­
rent Digital Computer, Notes of University
of Michigan 1961 Engineering Summer
conference, Theory of Computing Machine
Design.

5. RICHARDS, P., Parallel Programming, Tech­
nical Operations Incorporated Report No.
TO-B 60-27, August 1960, p. 4.

6. Ibid., p. 6.
7. BUCHHOLZ, W. (Ed.), Planning a Com­

puter System: Project Stretch, McGraw­
Hill, 1962, p. 136.

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647

