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PREFACE 

The serial publication “Advances in Heat Transfer” is designed to fill the 
information gap between the regularly scheduled journals and university 
level textbooks. The general purpose of this series is to present review articles 
or monographs on special topics of current interest. Each article starts from 
widely understood principles and in  a logical fashion brings the reader up to 
the forefront of the topic. The favorable response to the volumes published 
to date by the international scientific and engineering community is an indica- 
tion of how successful our authors have been in fulfilling this purpose. 

The editors are pleased to announce the publication of Volume 8 and wish 
to express their appreciation to the current authors who have so effectively 
maintained the spirit of the series. 
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I. Introduction 

With the recent advancements in the fields of atomic energy, aeronautics, 
and astronautics, an engineer is faced with more and more complex problems 
in heat transfer. While sophisticated instrumentation has greatly helped him 
to achieve accuracy and reliability in experimental measurements, the 
computer has immensely increased his capacity to  theoretically study more 
realistic models. These advancements, however, are no substitute for the 
power and ingenuity of the mathematical methods which are, and would 
remain as, the main tool in the hands of engineers for the solution of practical 
problems. In the present review some of the most important methods 
employed in recent heat transfer literature will be reviewed, with a special 
stress on those still under development, and examples from the literature 
cited, to demonstrate the power of a method and indicate the branches of 
heat transfer where one may look upon a particular method as a potential 
tool for obtaining the solution. While reviewing a particular method, 
examples will be presented from the recent literature irrespective of the 
location of the problem in the hierarchy of heat transfer literature. Thus, i t  
will be attempted to synthesize the recent developments in heat transfer from 
the point of view of mathematical methods. From a physical point of view, 
these developments have already been brought to light in a systematic and 
cohesive manner in the recently published monographs [l-71. No claim to 
completeness of the review is made in view of the limitations of space and 
the availability of other literature, especially of Soviet literature. 

No reference will be made in this review to the method of weighted 
residuals or integral methods. A review of these methods by Finlayson and 
Scriven [8] and an account of their application to unsteady heat conduction 
[9] have recently appeared. Similarly, the classical method of operational 
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calculus used extensively by Carslaw and Jaeger [lo] and Luikov [ I l l  in 
the theory of heat conduction and by Luikov and Mikhaylov [I21 in the 
theory of combined heat and mass diffusion will not be touched upon. 

It would not be out of place here to mention a few words about nomencla- 
ture. Although highly desirable, i t  is very difficult to achieve uniform nomen- 
clature in a review article of this nature, where various branches of heat 
transfer and many mathematical methods used therein are being reviewed. 
Therefore, for ease of reference, a comprehensive nomenclature has been 
provided separately for each section at the end of the review. The symbols 
which have the same meaning throughout the review have been listed under 
the section where they were used for the first time. 

11. Perturbation Methods 

The perturbation method consists essentially of expanding the dependent 
variable in a series of powers of a quantity known to be small. When this 
small quantity is a parameter the method is known as parameter perturbation 
and where it is a coordinate the method is termed a coordinate perturbation. 
Taking this small quantity to be c, the solution of the differential equation 
for 6 is the zeroth-order solution or the solution of the unperturbed problem. 
When the expansion is substituted in the differential equation and the like 
powers of E equated, we get a system of differential equations for the sub- 
sequent order solutions. The assumed series is convergent in the asymptotic 
sense [I31 and if the above scheme succeeds, we speak of it as a regular 
perturbation. This method has been used in a number of problems and has 
produced very useful results. 

In many problems, however, the ratio of successive terms in the solution 
ceases to  be small and the regular perturbation scheme therefore fails in 
some region of the flow field. Thus i t  is not possible to obtain a uniformly 
valid solution throughout the region of interest by a regular perturbation 
scheme. Such problems are known as singular perturbation problems. We 
propose to discuss some of the methods of dealing with such problems in 
the context of heat transfer. 

A. PLKMETHOD 

Sometimes the regular perturbation fails because of the presence of a 
singularity in the zeroth-order solution at a point or on a line in the region of 
investigation. This singularity becomes progressively more and more severe 
as the order of the solution increases. A technique for solving such problems 
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by a perturbation method was presented by Lighthill [14], in which the 
dependent variable u and the independent variable x are both expanded in 
powers of the small quantity c .  The method consists of expanding u and x 
thus: 

u = u,(x) + C U , ( % )  + C 2 L ' * ( % )  + '. ' , (1) 

s = + C X , ( % )  + C 2 S 2 ( 1 )  + ..., ( 2 )  

where takes the place of the original independent variable x, u&) is simply 
the zeroth-order solution of the regular perturbation method with replacing 
.Y, and s n ( ~ ) ,  IZ = I ,  2, 3, ... are so chosen that the higher approximations 
shall be no more singular than the first. This remark will become clear in the 
example discussed below. This method with various applications is presented 
by Tsien [I51 who called it the Poincark-Lighthill-Kuo or, in short, the PLK 
method because of the contribution of PoincarC [I61 and Lighthill [I41 to 
this method and its extensive application by Kuo [17]. The method has also 
been referred to as the method of strained coordinates (see Van Dyke [18], 
Chapter 6), where many examples of the applications of this method in 
aerodynamics are also presented. Lighthill [I91 has applied the method to 
conical shock waves in steady supersonic flows and Legras [20,21] to 
supersonic air foils. 

The PLK method is also applicable to cases where the nonuniformity of 
the solution arises in higher than the zeroth-order regular perturbation 
solution. While studying the nonlinear problem of temperature distribution 
in a melting slab with the melting face subject to a constant heat flux, the 
farther end of the slab being insulated, Goodman and Shea [22], by an 
integral method, derived the system of nonlinear coupled differential 
equations 

(3) 

s2 t lw -_ = YlS2 - vw, 
3 d U  

2 t lu  I: ,  ( I  -s) - = -3 
t i 0  

(4) 

to be solved with the initial conditions 

~ ( 0 )  = 0, ~ ( 0 )  = 0, ~ ( 0 )  = -2a , /3 ,  (6) 

where s, II', L' represent the nondimensional parameters related to the position 
of the melting interface and the temperature in the melted and unnielted 
parts of the slab, respectively, and Y ,  is a parameter with natural restriction 
0 < M ,  < 1 .  I f  a regular perturbation scheme is adopted for the solution of 
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the above system of equations, namely, if we assume an expansion of the 
following type 

f(a1, K " 9  0 )  =S& v, Q) + a1 fl(A v ,  0) + a: f2(1*, v, 8) * * -  (7) 

for each of the dependent variables s, I V ,  u, it is found that the second-order 
solution u 2 ( 0 )  contains terms of the type 0 exp (- 30) and O 2  exp (- 30). 
Thus the value of u obtained by this method for large 0 achieves positive 
values and for moderately large 0 these terms create humps in the solution. 
Since it follows from Eq. (5) and the last of the initial conditions in Eq. ( 6 )  
that u has to be negative, the entire solution obtained by the regular perturb- 
ation scheme is invalidated. 

To obtain a uniformly valid solution, we make recourse to the PLK 
method. Thus we define a new independent variable ( and expand s, u, bv and 
the independent variable 0 in terms of the new independent variable i in 
powers of the small parameter a. Thus we assume 

O(a,, P ,  v ,  i) = i + a1 0, (P ,  v ,  5) + a: 0 2 ( P ,  v, 0 + ... (8) 

and expansions similar to Eq. (7) with 0 replaced by the new independent 
variable i for s, cv, u.  Thus the problem posed by Eqs. (3)-(6) can be restated 
as 

with initial conditions 

s(C = 0)  = 0, w(( = 0)  = 0, u([ = 0)  = - 2 ~ 1 / 3 ,  (12 )  

provided O,([) in Eq. (8) are so chosen that 0,(i = 0) = 0, i 3 1 .  

the system of equations (9)-(12), the zeroth-order solution is given as 
Introducing the expansion in Eq. (8) and similar expansions for s, w, u in 

( 1 3 )  so(<) = ~ V O ( i )  = uo(i> = 0, 

sl(i> = 2t4  + (2~/3)[exp ( - 3 0  - 11, 

and the first-order solution as 

(14) 
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The equations for the second-order approximation become 

w2 = 0, 

= 2exp(-31) 4p[1 - 3 + +exp(-3()] + -2 . (19) 

I t  is clear from the above that i f  the right-hand side of Eq. (19) is free from 
terms of the type exp (-31) and 1 exp ( -31) ;  u2 would no longer contain 
the undesired terms 1 exp (- 31) and 1’ exp (- 31). Thus 0,  should be chosen 
such that 

{ do d1 1 

dB1 - + 4/41 - f )  = 0, 
d1 

or 
0, = - 2 p ( P  - $5). 

With this choice of O1 we get 

s2 = -4p2(1’ - $1) - $p2[exp (-31) - exp (-601, 

v2 = $p[exp (-31) - exp (-61)]. 

The corresponding third-order approximation is given by 

v 3  =&p2[-9exp(-3[) + 20exp(-61;) - l lexp(-9()] ,  

w3 = S 1 2 / V ,  

where the choice of 0, as dictated by this method is 

O2 = 4p2{(1 - +13 + +(( + +)[exp ( - 3 1 )  - I ]  + &}. 

In this manner we have been able to obtain a uniformly valid solution for 
all 1. 

Ahuja and Kumar [23] have applied the same technique for rendering 
uniformly valid the solution of the problem of the temperature distribution 
in a melting cylindrical tube, while the method has been used by Morris [24] 
to obtain a uniformly valid solution of the laminar convective flow in a 
heated vertical tube rotating about a parallel axis. Olstad [25]  considered the 
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problem of radiating flow near a stagnation point as a perturbation of the 
case without radiation. It was found that near the wall the regular perturba- 
tion procedure failed and therefore the PLK method was used for obtaining 
a uniformly valid solution. 

B. METHOD OF MATCHED ASYMPTOTIC EXPANSIONS 

Where the highest derivative in a differential equation is multiplied by the 
small parameter the PLK method fails. The basic difficulty in such problems 
arises from the fact that when the order of the equation is reduced certain 
boundary conditions cannot be satisfied. For such problems the works of 
Lagerstrom and Cole [26], Lagerstrom [27], and Kaplun [28, 291 developed 
the method of matched asymptotic expansions. 

Let v(x, c) be the solution of the singular perturbation problem. The 
usual asymptotic expansion in powers of 6 ,  E -+ 0 is called the outer expansion 
for s > 0 fixed. This expansion is valid i n  the interval y < s 6 1 with y 
independent of 6 .  The expansion may also hold for y 6 s 6 1 even if y 
depends on c and approaches zero as c -+ 0, provided y 'c -+ a. Let the 
outer expansion be denoted by 0'. To obtain the inner expansion a stretching 
transformation s = Zc is introduced [30]. The asymptotic expansion 
v(Zt ,  E ) ,  for c -+ 0 while Z 3 0 is fixed, is called the inner expansion denoted 
by ui. This expansion is valid for 0 < ( Z  = s ' c )  6 6. The inner and outer 
expansions thus have a common region of validity and in this region we can 
write the inner expansion of the outer expansion (u")' and the outer expansion 
of the inner expansion (0')". The asymptotic matching principle (Van Dyke 
[ 181, p. 64) states that: 

(27) 
The m-term inner expansion 

(of the n-term outer expansion) 
where m and I I  are any two integers. I n  practice 111 is usually chosen either 
equal to I Z  or 11 + I .  The unknown constants i n  co and u' are determincd by 
matching the two in  the common region of validity with the help of the 
above stated matching principle. Sometimes a composite expansion I.' is 
formed to obtain a solution uniformly valid throughout the interval 
0 < .\r < I .  uc can be formed either according to the additive law 

(28a) 

- the n-term outer expansion 
- 

(of the m-term inner expansion) ' 

p = 1p + (.i - ( p ) i  

o r  the multiplicative law as detailed in [18, p. 94): 

rc  - - p l . i i ( c o ) i .  (28b) 

A very instructive application of the method of matched asymptotic 
expansions has been made by lnger [31] i n  the analysis of near-equilibrium 
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dissociating boundary layers. We describe briefly part of this work to 
illustrate the method. 

1. An Example 

Consider the near equilibrium dissociating boundary layer flow of a 
diatomic gas along an impervious, axisymmetric or two-dimensional body 
which is either adiabatic or has a uniform surface temperature. Introducing 
the variables 

and assuming the Prandtl number and the Lewis number to be unity and 
p p  = const., we can write down the equations of momentum, atom con- 
centration, and energy in the form 

(32) y + f”‘ = 0, 

The total enthalpy H is related to the static temperature t and atom mass 
fraction c i  by 

It may be noted that 
complete equilibrium. The boundary conditions are 

H = C,t + ah, + JUf(f’)’. (35) 

+ 0 for chemically frozen flow and + co for 

( 3 6 )  
f ’ ( co )  = 1, u(5,oo) = a, = c, + C2te, t ( t ,m) = t ,  

H ( ~ , w )  = He = cpte + ciehD + +u:. 
At the surface 

f(0) = f W  = 0, (37) 

r ( t , O )  = t ,  = const. or aH(t,O)/Jrl = 0, (38) 

(39) H(t,O) = cptw + b ( 5 , O ) .  
For a perfectly catalytic wall we also have 

d t , O )  = UEQ,, = Ci + Czt,. 
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Thus in Eq. (33) for F + oo(l,’$ -+ 0), all derivatives including the highest 
order vanish and the problem is therefore a singular perturbation problem. 
We may write Eqs. (33) and (34) in terms of the new dependent variables E ,  
C and the new parameter r as 

subject to the following boundary conditions for the catalytic wall : 

E(5,w) = 0 = G(t,O), 
E(( ,O)  = 0 = C(5,O). 

Noting that the temperature profile can be written as 

I( t ,q) = lF.Q(q) + c,’GhD - hDc,’Z, 

i t  follows from Eq. (42) that 

G ( t d  = 0. 

a. Outer Expansion. Consider Eq. (41) for near-equilibrium flow where r 
is very large. The outer expansion can therefore be assumed for 
CC - D(l + D)-’G in the form 

m 

cl - ~ ( i  + D)-’C = C n;(q)(rgR)-N. (47) 
N = l  

Substituting from Eq. (47) in Eq. (41), using Eq. (42) and collecting terms in 
like powers of r, we determine the following equations governing the 
perturbation functions: 

n y ( I ? )  = f a k Q  + aLQ = cI~Q(0)[f”(q)/A]2? 

E;(q)  = f ( E y ) ‘  + (a;)’’ + 2Rf‘Ey 

(48) 

(49) 
Ek(q) = f(E;-l)’ + + 2R(N - l ) f ’ E ; - l ,  (50) 

where Eq. (45) has been used to simplify the right-hand side of Eq. (48). 
Although the expansion in Eq. (47) satisfies the outer boundary condition 
Eq. (43) it cannot satisfy the inner boundary condition Eq. (44). We therefore 
try to obtain the solution near the wall in a contracted variable Q. 

h. Inmr Expansion. From Eq. (41) it  follows that the coefficient of the 
highest order derivative on the left-hand side would not vanish for r + 00 

if we use a new independent variable Q = T’’2q. To obtain the inner 
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solution in terms of the new independent variable we first rewrite Eq. (41) 
in terms of this variable. Thus we get 

subject to  the wall boundary condition Eq. (44). Equation (51) is to be 
solved subject to Eq. (44). Let us assume that 

Substitution of the series Eq. (52)  in Eq. (51) yields a sequence of linear 
second-order differential equations governing the inner perturbation funct- 
ions. Solving these equations we get 

E\(t,Q) = E ,  sinh (tRI2 Q )  , (53) 

i i i( t ,Q) = E ,  sinh (("Iz Q )  - t-"a'&(O)[l - exp (- tR/' Q ) ]  , (54) 

E\(t,Q) = E ,  sinh (tRI2 Q )  , ( 5 5 )  

where E l ,  E 2 ,  . . . , En are arbitrary constants to be determined by matching 
the outer and the inner solutions. 

c. Mutching. From Eqs. (46)-(50) we have the outer solution for the atom 
concentrat ion 

E"(v,5)  = C~;~(0)/(rtR>l[.f"(O)/A]Z + o(r-2t-2R> * (56)  

Rewriting in terms of the inner variable Q, expanding for large r, and using 
the fact thatf'"(0) = 0, Eq. (56) becomes 

E"(Q,S) = alQ(O)(r&")-' + o(r-z~-2") (57) 

From Eqs. (52)-(55) the inner solution is 

E ' ( Q , S )  = E,r- ' / ' s inh ( t R I Z Q )  + &I--' sinh (SRI2Q) 

+ crLQ(O)[1 - exp(-tR/ '  Q)] r-l&-" 
+ ~ , r - ~ / ~  sinh ( (" / ,Q)  + o(r-Z), 
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which, in terms of the outer variable for large r, is 

iii(q,t) = sinh (qp2r1/2) 1 E N r - N ’ z  E N  z 0 ,  
N 

= (r(R)-’.;Q(o)[l - eXp ( - tR”Q)]  E N  = 0. (59)  

Neglecting the exponentially small terms, Eqs. (57) and (59) will match if 
El = Ez = E3 = 0. Thus the final inner solution for the catalytic wall is 

Zi(Q,5) = 0 ,  (60) 

Thus we have determined the uniformly valid solution consisting of Eqs. 
(48)-(50) and Eqs. (60)-(62) in  terms of the velocity variablef. 

2. 0 tiler AppIica tions 

Lam [32] has discussed the inner and outer expansions of the solution of 
the boundary layer on the walls of a hypersonic nozzle with special reference 
to the interaction of heat transfer and the boundary layer with a highly 
favorable pressure gradient. The method has been used in [33] to obtain a 
uniformly valid solution of the laminar flow in a uniformly porous channel 
with large injection. Varma and Murgai [34] have used the method of 
stretching the inner coordinate for obtaining the solution to the problem of 
natural convection above fires. Mueller and Malmuth [35] have discussed 
the temperature distribution i n  a radiating heat shield with arbitrary aero- 
dynamic heat source and longitudinal heat conduction. While the problem 
for low radiation led to a regular perturbation problem, the problem for 
low conduction poses a singular perturbation problem for which the above 
method has been used. Cess [36] pointed out that the solution of the non- 
dimensionalized boundary layer equations describing the free convection of 
a radiating, absorbing, and emitting gas presented a singular perturbation 
problem. Burgraff [37] has considered the viscous flow of a transparent 
radiating gas in the stagnation region by taking the boundary layer equations 
as an approximate model of the shock layer. In the case of constant density 
he obtained an exact solution and clarified the interaction between the 
viscous and inviscid regions by considering the asymptotic expansion of the 
above solution in terms of the Reynolds number. He then proceeded to 
construct the solution of the general case by the method of matched 
asymptotic expansions. 

Ellinwood [38] has used a pair of matched asymptotic expansions to 



12 1. J .  K U M A R  

obtain the solution for hypersonic flow across the shock layers around 
blunted slender cones and wedges. Drake and Rhodes [39] used the same 
technique to study the problem of heat transfer from a warm sphere held 
at rest in a fluctuating stream. The solution of the boundary layer equations 
for large values of the pressure gradient parameter provides another example 
of a singular perturbation problem. This was pointed out by Coles [40] and 
later by Beckwith and Cohen [41]: i t  has been briefly discussed by Lagerstrom 
[42] and in detail by Dewey and Gross [43]. 

Novotny and Yang [44] have analyzed the flow of a gas in  a two- 
dimensional laminar boundary layer with radiation, assuming a small 
temperature difference within the flow field. While examining the optically 
thick approximation they encountered a problem of singular perturbation 
of the energy equation. The problem was then analyzed by matched 
asymptotic expansions with a parameter characterizing the optical thickness 
of the gas. Fendell [45] has used the same method in the solution of laminar 
natural convection about an isothermally heated sphere at small Grashoff 
numbers. The problem of similar compressible boundary layers with large 
injection and favorable pressure gradient has been treated in [46] where 
matched asymptotic expansions have been obtained for each of the two 
layers: (a) an inner layer adjacent to the surface where viscosity is unimportant 
and (b) an outer boundary layer where transition takes place from the inner 
layer to the outer flow. 

Based on the method developed earlier [35] Mueller and Malniuth [47] 
have discussed the asymptotic solution for heat conduction in radiating 
shells subject to discontinuous solar flux. Kuiken [48] has applied the 
method to the free convective boundary layer for the case of Prandtl number 
approaching zero. 

The method of matched asymptotic expansions has recently been critically 
examined by Frankel [49] who has rigorously established the sufficient 
conditions under which the asymptotic matching principle of Van Dyke 
[18, p. 641 is correct. He has applied the method to an ordinary differential 
equation with a turning point and has shown that a restricted matching 
principle is valid even when it is applied to truncated inner and outer 
expansions which d o  not overlap, to the order of terms being matched. 

c. METHOD OF MULTIPLE SCALES A N D  OTHER SINGULAR PERTUKRATION 
METHODS 

Cochran [50] and Mahony [51]  have developed the method of  multiple 
scales to deal with singular perturbation problems. I n  their solution, the 
sensitive coordinate is replaced by a pair of coordinates, namely, the un- 
stretched coordinate .Y and the stretched coordinate Z = s i c .  One can then 
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assume a conventional asymptotic expansion uniformly valid throughout 
the region. Thus we assume an asymptotic expansion of the form 

This expansion holds uniformly for 0 < x < 1 and also for 0 < Z 6 co, 
and the necessity of matching has been obviated. The above expansion is 
substituted in the differential equation and f2, f3, ... are determined in a 
manner parallel to the PLK method with the requirement that the higher 
order solutions are no more singular than the first. A similar idea has been 
advanced by Cole and Kevorkian [52], and the method has recently been 
elaborated by Fowkes [53]. 

Vasileva [54] has set out a method of finding a uniformly valid solution of 
a system of differential equations containing a small parameter multiplied 
to the highest order derivative. Using this technique Varma and Murgai [55] 
have obtained an analytical solution to the problem of natural convection 
above fires, the medium being assumed to contain solid particles. A compre- 
hensive list of contributions of Soviet mathematicians to the mathematical 
theory of perturbation methods appear in  Vasileva [54]. 

Another related method of dealing with singular perturbation problems, 
called the method of intermediate limits, has been described by Kaplun [29] 
and in the collection of papers of Kaplun recently published [56]. 

Some of the very recent contributions to the basic aspects of the singular 
perturbation method are presented in O’Melley and Keller [57-591, Murray 
[60], Erdelyi [61, 621, Vasileva [63], Visik and Lyusternik [64, 651, Friedman 
[66], Fife [67], and Mackie [68]. 

D. METHOD OF SERIES TRUNCATION IN ELLIPTIC FLOW PROBLEMS 

Perturbation methods are only partially successful in  problems governed 
by elliptic partial differential equations. I n  the case of such problems, when 
a power series expansion is substituted in the differential equation, it so 
happens that the nth-order equation involves (n + 1)th-order terms. This 
i s  in contrast to the parabolic equations where the nth order equations involve 
terms of the order up tononly as, for example, in  the case of Blasius expansion 
in the boundary layer theory. It therefore becomes essential to somehow 
truncate such terms of a particular order to match the number of unknowns 
to the number of equations. This method is sometimes termed the method of 
series truncation [69]. Swigart [70] and Bazzin and Gladkov [71] first 
applied the method of series truncation to treat the inverse problem of 
inviscid two- and three-dimensional, axisymmetric nonradiating flows over 
blunt bodies. In this approach the dependent variables, namely, the stream 
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function and density p, are first expanded in  a power series in the longitudinal 
curvilinear coordinate 5 or in the trigonometric functions of the angular 
distance. Substitution of this series in the governing partial differential 
equations and collection of terms of like powers of 5 yield differential 
equations with the normal coordinate r]  as the independent variable. By 
truncating the series of a definite order, a closed set of equations is obtained 
which are solved numerically. Kao [72] and Conti [73] have applied the 
method to viscous flows and nonequilibrium reacting flows, respectively. 
Conti [73] found that if the pressure rather than the density is expanded in 
a power series, the accuracy at each truncation is greatly improved. Van 
Dyke [74] has been able to achieve much higher accuracy with a second- 
order truncation by using pressure as the primary variable and also (a) by 
the use of {/(5’ + 1) as the expansion variable instead of 5 and (b) by 
interchanging the roles of q and x. Closely following Van Dyke’s scheme, 
Cheng and Vincenti [75] extended the method to the problem of radiating 
inviscid flows over a blunt body. 

In all the above cases, however, the higher order terms were truncated 
arbitrarily only to reduce the number of variables. The magnitude of the 
terms dropped in the truncation is usually as large as the magnitude of the 
terms retained. Kao [69] has shown that if the momentum equation is 
replaced by Bernoulli’s equation, the higher order terms in each truncation 
become the velocity components normal to the body or the shockwave. 
Since such terms are actually very small in the case of hypersonic flows, an 
order of magnitude analysis could therefore be applied. I t  has been shown 
[69] that if the other terms of the order of truncated terms are also dropped, 
analytic solutions could be obtained in some cases even up to third order. 

111. Asymptotic Methods 

A. MEKSYN’S METHOD 

Meksyn [76] has developed a very effective asymptotic method based on 
the method of steepest descent [77, p. 4371 and series inversion [78, p. 1841 
to find solutions to the velocity and thermal boundary layers. The method 
has since been used by many authors in various fields of heat transfer. It 
essentially consists of expanding the solution in powers of r]  with all but one 
coefficient in the series determined. This unknown coefficient is asymptotically 
determined so as to satisfy the condition at infinity. To start with the series 
is substituted in the differential equation for all derivatives except the two 
highest order ones. The differential equation is now treated as a linear one 
for the next lower derivative. An integration with respect to q gives the 
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integral from which the yet unknown coefficient is to be determined. This is 
done by evaluating the integral asymptotically by the method of steepest 
descent, the integrand having a stationary point at q = 0. 

1 .  Example 

We illustrate the technique by describing the solution of the problem of 
natural convection in two-dimensional plane flow due to a source singularity 
of heat. Following Kotorynski [79] it can be shown that the system of 
partial differential equations governing the problem can be reduced with 
boundary layer approximations to the system of the following ordinary 
differential equations 

f”’ + f f ”  - f f ’ 2  + h = 0, 

h’  + a f h  = 0, 

(64) 

(65) 

with the boundary conditions 

f ’ h d q  = 9/25, SYm 
f ’ + O ,  q - +  * a, (67) 

f(0) = . f ” ( O )  = 0, (68) 
where f and h are respectively the nondimensional velocity and temperature 
functions, and the primes denote the order of differentiation with respect to 
the similarity variable. Equations (64) and (65) are together equivalent to 
the fourth-order equation 

(69) 
0 

0)f”’ + 3f’f‘’  + 0 2 f z f ”  - - f f ’ 2  = 0. f ( i ” )  + (1 + 
3 

The essential steps in determining f and h by Meksyn’s method can be listed 
as : 

(i) Expandingf(q) in a power series in q satisfying the boundary conditions 
at q = 0. 

(ii) Assuming that the expansion for f, f’ is known, Eq. (64) is formally 
solved as a linear inhomogeneous first order equation inf”. Integrating with 
respect to q givesf’(q) from whichf’(0) can be determined. 

(iii) Another condition for determining the unknown parameters is 
provided by the integral condition Eq. (66). 

(iv) By a transformation of the independent variable q, the integrals are 
expressed as asymptotic expansions involving gamma functions, thus 
reducing the above two conditions to algebraic equations. Euler’s trans- 
formation [76, p. 581 is used if necessary to make the series convergent. 
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From Eq. (65) we obtain h(q) in terms off(q) by integrating it as a linear 
differential equation. Thus 

Nv) = 4 0 )  exp [ - CJF(V)I, (70) 
where 

Writing Eq. (64) in the form 

f ” ’  + ff” = + f ’ 2  - h(0) exp [ -aF(q)]. 

it is easily shown that 

f”h) = exP[- F(rl)Idl(rl) 

= exp[-F(q)] C + - f ’ * ( i r )  exp[F(u)] du - h(0) i 3:: 
I a 3 1, (72) j:xp [( 1 - a)F(u)] dir 

The condition Eq. (68) onf”(0) requires that C = 0. Also 

f ” ( v )  = exp [ - f+1)14h) 

= exp [ - F ( q ) ]  - f ” ( i r )  exp [aF(q) - F ( q )  + F (  I ) ) ]  dir - h(0) l J: 
j;exp ((0 - I ) [ F ( v )  - F ( l i ) ] )  du 0 < 1, (73) 

and therefore by one further integration with respect to q and letting 9 -+ co, 
we can write 

Also the integral boundary condition Eq. (66) is transformed to 

/ i ( O ) I  exp [ - ( 1  + a )F(q ) ]~ , (q )dq  = 9/50 (T 3 1,  (76) 
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Assuming 

and substituting the above expansion in Eq. (69) we obtain the difference 
equation 

for the coefficients a,. It may be noted that f ( q )  is an odd function and 
therefore 02,  = 0 for all n. Let 

b,, = 0 m = 1, 2 ,  ... . 

We now perform the inversion of variables q and T in Eq. (80). If I T /  is 
small we may write [78, p. 1841 

where 

where y ,  7' are the circles about the origin described in a positive sense. 
Since the transformation in  Eq. (84) is double-valued, a single closed circuit 
around the origin in  the q-plane corresponds to a double circuit in the 
?-plane. It follows from Eq. (85) that A,  is the coefficient of q" in the 
expression 

[co + c,q + c2q* + . . . I - ("+?  
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Having thus determined A,,, we now transform r]  in the integral on the 
left-hand side of Eq. (74) to T and write the integral as 

where 6 is an arbitrary small parameter, the power of 6 being so chosen so 
as to make the final expression an expansion in integral powers of 6 .  The 
expansion would be convergent for small c and we may use if necessary the 
Euler expansion for L = 1 .  Assuming 

Eq. (74) can be written as 
- f ' (O) = E d n r ( q ) € n + l .  n' 

0 

In view of the relations (80) and (81), it can be shown in a fashion exactly 
similar to how A, was determined in Eq. (85) that d, is one half of the co- 
eficient of r]" in the expression 

(b, + b,i1 + b2q2 + .-*)(c, + C,V  + c2v2 + . . . ) - ( " + 1 ) ' 2  

The coefficients b, and c, being already known, we may then determine d,,. 
In a similar fashion, if we assume that x ( q )  in Eq. (76) may be given as 

x,(v) = enqnT (88) 

we can determine en. Similarly the coefficients in the expansion of & i n  
Eq. (73) and X2 in  Eq. (77) can be determined. Having determined these 
coefficients we get from Eq. (76) the condition 

(89) 9/50 - h(o) Ef,,(i + o ) - ( n +  l)l2r [C n + c"+ I ,  

where 

and similarly for o < 1 the condition 

9/50 - h(0) 2 1, , (2~)-~"+1"2  r[(n + 1)/2]L"+' , (90) 

where the coefficients /,, are given by 
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Having thus deterniinedf”(0) and h(0) we have found the complete solution 
of the boundary layer problem. Kotorynski [79] has compared the results 
so obtained with the known exact solution of the problem [XU] and found 
excellent agreement between the two solutions. 

2. Applications 

Sovershenny and Tirski [81] used Meksyn’s technique to analyze the 
sublimation of a solid near a critical point in flat and axisymnietric gas flows. 
Brindley [82] applied the technique to problems of free laminar convective 
flow and combined forced and free convection at a vertical heated plate. Li 
and Kirk [83] similarly analyzed the binary boundary layer equations in the 
presence of an external flow field pressure gradient with the Mach number 
being not necessarily small. Chao and Jeng [84] have applied a method based 
on Laplace transforms and Meksyn’s technique to the analysis of unsteady 
laminar forced convection heat transfer at a two-dimensional and axisym- 
metrical front stagnation point, with an arbitrary prescribed wall temperature 
and heat flux variation. Jeng [85] has suggested a solution to the problem of 
radiative heat transfer in an absorbing boundary layer based on the same 
method. More recently Li and Kirk [86] have used the method in the problem 
of a dissociated boundary layer over a flat plate with the first-order atom 
recombination rate distributed in an arbitrary continuous manner. Hayday 
and Bowles [87] have applied the method to heat transfer near the stagnation 
point in three-dimensional flows. The method has also been applied in [88] 
to a laminar boundary layer flow of a dissociated gas past a catalytic surface. 
Lock and Gunn [89] have used the method in the analysis of the laminar 
free convection from a downward projecting fin. In [90], the method has 
been applied to obtain the higher approximations of the boundary layer. 
Cooper [91] has analyzed by the same method the nonlinear conductive heat 
transfer in a semi-infinite slab of variable conductivity under continuous 
surface heating . 

A very useful application of Meksyn’s technique is to determine the 
effect of nonsimilarity on  a boundary layer. Assuming that the boundary 
layer is approximately described by some similar solution, the effect of 
nonsimilarity terms may be calculated by expanding the solution of the ful l  
boundary layer equations in terms of the small parameter characterizing the 
departure from similarity. Merk [92] and Bush [93], following Meksyn’s 
approach, have analyzed the effect of nonsimilarity on a boundary layer. 

B. WKBJ APPROXIMATION 

Another asymptotic method, namely the WKBJ approxiniation, initially 
developed in quantum mechanics [94-961, has recently been used by various 
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authors for tackling problems in different modes of heat transfer. The method 
concerns itself with the asymptotic solution of a differential equation with 
respect to a large parameter occiiring in the equation. If the coefficient of the 
large parameter in the equation vanishes at  some point, this point is termed 
a transition or a turning point and it becomes necessary to determine the 
transformation of the solution through this point. The method of achieving 
this transformation was discovered by Wentzel, Kramers, and Brillouin 
and independently by Jefferys and is therefore named the WKBJ method. 

I .  Asjvnptotic Solution of Lioiicillc.’s Differential Eqlratioti 

Consider Liouville’s differential equation 

where s is real and Eq. (91) holds for a 6 s 6 h. p ( s )  is a real and twice 
continuously differentiable function and r ( s )  is continuous for a < x < 6. 
Let p ( . ~ )  have a zero at s = c in the interval a < s < h. It is shown in many 
texts, for example, Erdelyi [96, p. 911, that Eq. (91) has an asymptotic 
solution of the form 

)’ = c,[p(x)]-”4 cos {A J[p(x)]”2 r f x }  + C,[p(.)]- 

x sin (1. J [ ~ ( X ) ] ” ~  dx}, 

valid in c + c < s 6 h, c > 0 while in  the interval a < .Y < c - c where 
p(.i-) is negative Eq. (91) has the solution of the form 

exp { -1. I[ - p ~ ( x ) ] ” ~  (/XI.. (92b) 

The above two solutions are valid only where the function 

1 p“ 5 p’Z r 
p ( p )  = - - - - - - - 

41’’ 16 p3 p 
(93) 

is positive and finite [96, p. 791. Obviously at s = c both the above solutions 
are invalidated. The WKBJ method deals firstly with finding the relation 
between the constants C, and C, in  Eq. (92a) on the one hand, and C3 and 
C, in Eq. (92b) on the other, and secondly with finding the solution in the 
interval c - c < .Y < c + c. Sufficiently near the point s = c we can write 

p ( s )  = (.Y - c)p’(c). (94) 



RECENT MATHEMATICAL METHODS IN HEAT TRANSFER 21 

Neglecting r(x) in Eq. (91) and substituting for p ( x )  from Eq. (94), it can be 
solved in terms of the Bessel functions of order 1/3. By using the asymptotic 
expressions for Bessel functions and comparing the solution with those 
given by Eqs. (92a) and (92b) we obtain the connection between C , ,  C, and 
C,, C,. To determine the solution which is valid in the interval c - c < 
x < c + c, Eq. (91) is reduced to the form 

by what is known as Langer’s transformation [96, p. 941. The solution of 
Eq. (95) with the right-hand side equated to zero is well known and provides 
the first approximation to the solution of Eq. (91) n e a r s  = c. 

2 .  Application to Boundary Layer Heat Transfer 

Imai [97] has developed the WKBJ procedure for the second-order linear 
differential equation 

where a is a parameter and 

f ( x )  = u , x ( I  + bl.\- + b2x2 + a * . )  a ,  # 0, (97) 
and applied it to solve the nondimensionalized energy equation 

T + afT’ - an(2 - p)f’T = 0 (98) 

in the boundary layer, with temperature varying as the nth power of the 
distance and the velocity in the outer flow varying as the mth power of 
distance along the boundary layer. Through the transformation 

the energy equation (98) is reduced to the form 

0” - P(r])@ = 0, 

f ( q )  = ia2f” + a[t + n(2 - P)] f ’  
where 

and 
I’= j S t q 2  - &Pr]3 ,  

where p = 2m,’(m + I) and ct =.f”(O), which has been tabulated by Hartree 
[98] for several values of p. The function P(q)  i n  Eq. (100) is zero at i /  = 0 
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asfandf’  vanish at the wall. The form of Eq. (100) therefore suggests the 
WKBJ method for its solution. It is shown by Imai [97] that for large n the 
flux at the wall is given by 

The results of Imai for 

A = .a[+ + n(2 - p)] .  
p = 0 and B = 0.72 have been compared [97] with 

those of Chapman and Rubesin [99], Levy [loo], and Lighthill [I011 and are 
found to be in very good agreement. 

3. Further Applications 

Sellars et al. [lo21 have used the WKBJ approximation for analysis of 
forced convection heat transfer in a fluid with constant density which is in 
steady laminar motion in a circular tube. The velocity profile is assumed to 
be fully developed when it enters the tube whose wall is kept at a constant 
temperature or a flux applied to it. The solution of the analogous problem 
with turbulent flow has been obtained in [ 1031. Cess and Sparrow [ 1041 have 
used the technique in conjunction with Laplace transforms to determine the 
temperature-time history of a rotating disk which is initially at the fluid 
temperature and is then subjected to a step change in surface temperature. 
More recently Nayfeh [lo51 has used the method to obtain asymptotic 
expressions for large eigenvalues of the eigenfunctions of a differential 
equation with two turning points. It has been shown that the higher eigen- 
values of the Graetz problem obtained in [I021 follow as a particular case 
of the solution [105]. 

IV. Variational Methods 

The variational formulation of a problem whenever possible utilizes the 
powerful tool of the direct methods of the calculus of variations [I061 and 
[lo71 for obtaining an approximate solution to the problem. It is well known 
that the problems governed by linear self-adjoint equations can be formulated 
as variational problems. For the class of nonlinear and nonself-adjoint equa- 
tions to which the non-steady conservation equations of mass, momentum, 
and energy with variable coefficients belong, a variational formulation in 
the classical sense is not possible, and recourse has therefore been made 
to looser or extended variational formulations based on functionals having 
some physical content. We will describe two such attempts on the variational 
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formulation in continuous systems, namely, those of Biot and of Glansdorff 
and Prigogine. 

A. BIOT’S VARIATIONAL PRINCIPLE 

1. Variational Formulation of the Heat Conduction Equation and Its 
Applications 

Beginning with the establishment of a generalized theorem of Minimum 
Entropy Production [ 1081 in an irreversible process, Biot [ 1091 has developed 
the formulation of Lagrangian thermodynamics, similar to the Lagrangian 
equations in mechanical systems. The principle is developed through the use 
of a heat flow vector H whose time rate of change H is the heat flux across an 
area normal to it. The variational formulation then has the form in the case 
of isotropic, one-dimensional heat conduction : 

6V + 6D = -tdH, ( 104) 

where V is the thermal potential defined as 

V = jx j C r )  dt d x  

and D is the volume-dissipation function 

D = lX& (H)’ d x .  

If the heat flow field H is defined in terms of time dependent generalized 
coordinates qi(t) as 

it is shown [lo91 that the nonlinear heat conduction equation with tempera- 
ture dependent thermal conductivity and specific heat C = c,p, namely, 

H = H(qi, X, z), (107) 

is equivalent to the Lagrangian equation 

where Qi = [t(dH/~?q~)]~=~ and is named the thermal force. The method for 
using the above variational formalism in practice consists of assuming a 
temperature profile usually of the form 

t = 41[1 - (X/42)IP, ( 1  10) 
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where p is any integer greater than two. In the case of a finite slab with a 
prescribed temperature at the surface, q,  is the known temperature at x = 0 
and q2 is the “penetration depth,” a concept analogous to the thermal 
boundary layer. After the “penetration time,” that is, the time when q2 
becomes equal to the slab thickness, the second generalized coordinate 
becomes the prescribed temperature at the other surface. In the case of a 
prescribed flux condition, an additional condition of overall energy balance 
at the surface, namely, 

H, = F 

is also satisfied. This is the approach followed by Lardner [110] who has 
presented various applications of the Biot’s formulation. The values of V 
and D for the assumed profile are calculated and substituted in Eq. (109), 
reducing the nonlinear partial differential equation of the second order to one 
or more first-order ordinary differential equations which can usually be 
solved in closed form for the constant properties, and reducing to simple 
quadrature in the case of temperature dependent thermal properties. 

The above method has been used by Biot and Daughaday [l 111, Biot and 
Agrawal [112], and Lardner [ I  131 in  problems involving change of phase. 
Bukhvotsov and Frankel [ I  141 applied Biot’s method to obtain temperature 
distributions in round disks and rectangular plates cooled by a fourth power 
law at the flat surfaces with the edges being kept at a constant temperature. 
Muchnik and Polykov [115] have demonstrated the validity of Biot’s 
formulation in the case of time dependent boundary conditions. Richardson 
[ I  161 has analyzed the unsteady heat conduction in a semi-infinite solid with 
the boundary condition of the flux varying as the 11th power of the surface 
temperature. Ahuja [ I  171 has used the same method in the analysis of non- 
linear heat conduction i n  a solid in contact with a well-stirred fluid of 
variable properties. Chu [I  181 and Lardner [I 191 have described the method 
of obtaining the solution to nonlinear heat conduction in a slab with 
convective boundary condition. Weiss [120] has reviewed the method in 
comparison to the weighted residual method of the heat balance integral [9] 
and the Galerkin method and the collocation methods [8]. He applied Biot’s 
method to evaluate the temperature distribution in a composite plate made 
of various materials heated under aerodynamic conditions. Rafalski and 
Zyszkowski [121], using the approach of [IIO], have developed Biot’s 
formulation for the boundary condition B,(s, r ,  7) = 0, v = 1, 2, ... , p ,  
where B, is a function of temperature with coefficients dependent on time 
and is prescribed on each surfaces, of the body where Ze=, s, = s, and applied 
it to the semi-infinite body with the boundary condition 

B(s, f, T) = Kn.grad f + h(r” - r t )  
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on the surface. Nazarov [I221 has modified the variational principle of Biot 
with the thin plate approximation and applied the new variational principle 
to a composite layer of 2n thin plates with fourth power radiation boundary 
condition. 

2. Variational Formulation of Unsteady Heat Transfer in a Moving Fluid 

In further papers Biot [123-1251 has generalized his method to heat 
transfer problems in an incompressible, laminar and turbulent fluid flow, 
although it has been recognized [I251 that in systems involving fluid motion 
the basis of the formulation of the Lagrangian thermodynamics, namely, 
the validity of Onsager’s reciprocity relations, is violated. Thus the transient 
energy equation 

(112) 
at 

a5 
C- + C u m  V t  - V . ( k V t )  = 0 in V,,  T > 0 

and the boundary condition 

K n * V t  + h,(t - t,) = 0 on S, T > 0 (113) 

t = $ ( x )  in V , ,  T < 0 (1 14) 

with the initial condition 

are shown to be equivalent to the Lagrangian equation [I261 

where 

J 

and the initial condition Eq. (1 14) is taken into account on integrating the 
first-order equation (115). In [I251 Biot introduced a new concept of a 
“trailing function” to replace the usual heat transfer coefficient. The trailing 
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function r(P,P’) is defined as the temperature increase at a point P in the 
fluid when a unit quantity of heat is injected at P‘. Then using the conduction 
analogy, namely, the similarity between the equation of transient heat 
conduction and steady-state boundary layer heat transfer, he finds the value 
of the trailing function by his variational method. He has shown [I271 how 
the concept of the trailing function can be used to find quite accurate solutions 
to laminar and turbulent boundary layer heat transfer. Biot has further 
clarified [128] the notions of the thermal potential and the dissipation 
function and has demonstrated the relation of his formulation to irreversible 
thermodynamics. It may be noted that the Lagrangian equations are 
applicable to a mixed system composed of a solid matrix and a fluid moving 
through it. Such problems are encountered in sweat cooling and drying of 
porous bodies. Chu and Seader [I291 have applied Biot’s method to the 
problem of sweat cooling. Based on Biot’s formulation, Nigam and Agrawal 
[I301 produced a variational formulation for the convective heat transfer 
from a constant property fluid. Gupta 11311 presented a formulation very 
much like that of Biot for the fully developed laminar heat transfer in 
uniform channels and another variational principle [I321 for the con- 
vection of heat in anisotropic media. 

B. VARIATIONAL PRINCIPLES BASED ON LOCAL POTENTIALS 

1. Generalized Evolution Criterion 

The basis of the formulation of variational principles for continuous 
systems is the search for a potential which, in some sense at least, could play 
the role parallel to that of a Lagrangian in the mechanical systems. For linear 
problems governed by steady-state balance equations, the answer was 
provided by the Theorem of Minimum Entropy Production [133]. For 
systems in which (i) the phenomenological coefficients are constant, (ii) the 
Onsager relations are satisfied, and (iii) convective terms are negligible, the 
stationary state of the system is a state of minimum entropy production 
[ 134, 1351. The restrictions stated above made use of the variational formula- 
tion of the problem in continuous systems unnecessary since they could be 
successfully treated by classical methods. Recently Glansdorff and Prigogine 
[ I  36, 1371 have presented a generalized evolution criterion based on the 
concept of local potential, valid for systems not subject to the restrictions of 
the type stated above. From the evolution criterion, the systems of equations 
of balance follow as Euler-Lagrange equations, the latter term being used 
in a more extended sense than the classical one. This can be understood from 
the fact that the variational formulation of the conservation equations is of 
a special nature involving two types of variables, namely, the assumed 
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macroscopic variables not subject to variation and also the same variables 
which are to be evaluated and are subject to variation [138-1401. 

The conservation equations of mass, momentum, and energy for a system 
of n components in which r reactions take place are 

where summations over the dummy suffixes are everywhere implied. It is 
shown in Prigogine and Glansdorff [I401 that the above conservation 
equations (121)-( 123) follow as the extended Euler-Lagrange equations of 
the functional F, called the unsteady local potential. Thus 

F = [ d ~ ~ r ,  t*, pyr py*, ui, ui*>, ( 124) 

and A is defined in terms of the local potential (D for the stationary state as 
n 

so that 

aT t *  
ap*e* S t - '  + 'PY* S(p t - l )  + 
Ot d T  

where J, and the corresponding A'* are listed in Table I. The J= and 
the corresponding Xu which have been listed below have been called the 

TABLE I 
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components of Generalized Entropy Production. The Euler-Lagrange 
equations are 

with subsidiary conditions 

t = t*, py = p; ,  0. I = v* I .  (129) 
It may be noted that L is a function dependent on both the assumed macro- 
scopic variables t*, p:, v? and also on t, p y ,  and v ,  which are to be deter- 
mined. While taking the variation of F with respect to the variables p( , t - l ,  v i ,  
and t-' the corresponding starred quantities are kept constant, and after 
taking the variation the subsidiary conditions Eq. (129) are imposed. The 
Euler-Lagrange equations (128) are therefore not the classical conditions 
known as such and have been referred to as the extended Euler-Lagrange 
equations. It is through these equations that the complete conservation 
equations (121)-( 123) are recovered in the variational formulation based on 
local potentials. 

2. Mathematical Methods Used with Local Potential Formulation 

a. An Iteration Scheme. For simplicity let us assume that we are interested 
in determining the temperature t in a system under given boundary and 
initial conditions. Firstly the Lagrangian, Eq. (125), and the corresponding 
functional F, Eq. (124), would be constructed for the appropriate energy 
equation governing th? temperature. We now assume a plausible function 
for t satisfying the initial and boundary conditions, and a first approximate 
value for t* is calculated by the minimization of F as in the Ritz method 
[106]. This value o f t *  is taken as the new approximation for t and a second 
approximation for t* is calculated. This iteration scheme has been shown to 
converge by Kruskal [141]. 

6. Self-consistent Approach. In the same problem of determining the 
temperature the self-consistent approach envisages the assumption 

t = t(rxi), t* = t*(aT>, (130) 
where t and t* are assumed to be plausible functions satisfying the boundary 
and initial conditions and !xi, ccr are two sets of arbitrary parameters. Using 
the values of t and t* from Eq. (130) the corresponding functional F, Eq. 
(124), is evaluated, and using the Ritz method [lo61 for the minimization of 
F we obtain the equations 

aF/Flaui = 0 i = 1,2,  3, ... , m. (131) 
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The subsidiary condition Eq. (129) is now affected by setting u ,  = a,*. The 
algebraic equations ( 1  3 1) are then solved for the coefficients. Convergence 
properties of this scheme have been discussed in [142]. 

3. Applications 

Hays [143, 1441 has applied the above formulation to the analysis of a 
slow viscous motion of an incompressible fluid with temperature dependent 
viscosity in Couette and Poiseuille flows. The formulation has also been 
applied by Hays [I451 and by Hays and Curd [I461 to  various nonlinear 
problems of heat conduction. Butler and Rackley [I471 have applied the 
same method to the problem of heat transfer in a slow moving incompressible 
fluid between parallel plates or in a circular tube with the assumptions of 
temperature dependent viscosity and conductivity. Very recently Weihs and 
Gal-Or [148] have applied the local potential formulation to the fluid flow 
in the boundary layer including viscous effects, coupled heat and multi- 
component mass transfer, and chemical reactions. A distinguishing feature 
of this work is the breaking up of the local potential in parts by application 
of the Curie principle [134, p. 571 resulting in a great simplification. Recently, 
Kumar [I491 has formulated the local potential for the nonlinear coupled 
heat and mass transfer in a porous medium involving phase changes. These 
equations are in a nondimensional form 

(132) 
a@ = [ F,(T,O) g] - Ko*F2(T,0) -, 

ad ax, dd 

- Lu, Pn, F3F4(T,0) ax, 
dO 
do 
_ -  

where F,,(T, O), I I  = 1, 2, 3, 4, are the functions describing the effect of 
temperature and moisture transfer potential on the various thermophysical 
characteristics of the porous medium. It has been shown that the Euler- 
Lagrange equations 

= o ,  (2) = o ,  
T*,Q',F,* 

with the subsidiary conditions 

T = T*,  0 = 0*, F,, = Fn*, (135) 
yield Eqs. ( I  32) and (I 33) where 

2 dO 

20 
+ KO* F2* - T +  

ti v, (10 1 ao * dT* GO + 0 - - Lu, Pn, F3*F4* 7 - 
a0 2 X i  dX, 
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The formulation has been applied to the problem of heat and mass transfer 
in an infinite plate of finite thickness with thermal and mass diffusivity 
assumed to be linearly dependent on temperature and moisture transfer 
potential, respectively, under boundary conditions of the first kind (constant 
temperature). 

Recently Kumar and Gupta [I501 have pointed out that a boundary layer 
approach in the local potential formulation, using the concept of penetration 
depth, can greatly simplify the arduous calculations involved in the deter- 
mination of coefficients of the assumed profile. This simplification is achieved 
by assuming one-parameter polynomial profiles in terms of the penetration 
depth. The approach can be used for one-dimensional heat flow problems 
in semi-infinite media for all times and for finite slabs for the initial time. 
This new approach has been applied by them to problems of heat conduction, 
complex solid-fluid systems, and to concentration dependent diffusion. 

a. A Problem of Melting. Consider a solid x > 0 of melting temperature 
t ,  and maintained at a uniform zero temperature initially. Let the position 
of the melting face be at x = U ( T )  at time T .  Assuming that a constant flux 
R is supplied at this face which is initially at x = 0, the solid would start 
melting when the face temperature becomes t , .  Let q(r) be the penetration 
depth for the temperature beyond the melting front so that t = 0 at 
x = O ( T )  + q ( T ) .  Following the approach of [150], we write the local potential 
for the volume of the solid contained between the surfaces x = U ( T )  and 
x = a(t) + q ( T ) ,  with constant thermal properties, in  the form 

J = ~ ~ ' q ' ~ ' [ ( ~ ~ ~ ) ~ d t , d x ) z  + t (d t* /dT)  1 d x ,  (137) 

where t* is the assumed temperature distribution not subject to variation and 
t is the temperature we wish to determine. Assuming cubic profiles for t and 
t* satisfying the conditions at x = U ( T )  and x = U ( T )  + q(r), 

' 3  

(138) 
x - a  3 

t = t m ( l  ---) x - a  , t* = 1. (1  - 7 )  . 

The parameter q(r) is determined as a function of T by following the self- 
consistent approach. Thus the condition (dJ/dq)q. = 0 followed by q = q* 
gives 

Equation (139) involves two unknowns q and a and we therefore require 
another condition to determine both of them. This second condition is 
provided by the energy balance equation 

2qq + 7qd = 21k. (139) 

R = ( I  + Ct,)ci + Ct dx. ( 1 40) 
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Using the profile for t ,  Eq. (138), in  the integral on the right-hand side of 
Eq. (140), we get 

Solving Eqs. (139) and (141) as simultaneous equations we get the non- 
dimensional rate of melting 

R = (I + Ct,)d + $Ct,i. (141) 

Id 
R m+4& 

where 
m = (J&v)c~,. 

If we define the nondimensional melting time as 

and if q1 = q / J k r ,  we get q,(r) from the equation 

m +4& 
14Jnrn '' - 14m2n 

3(& + 2m) (m + 44;) -~ 

= 0.392 + - - 1 (145) tn ) 
Having thus determined q,(r), and therefore q(r), the temperature distribution 
in the melting solid is given by Eq. (138). 

TABLE I1 

COMPARISON OF NONDIMENSIONAL RATES OF MELTING FOR VARIOUS VALUES 
OF NONDIMENSIONAL TIME AND FOR m = 0 AND m = 0.2 

~ 

m=o la/R m=0.2 

0.01 0.011 0.012 0.063 0.013 0.014 0.060 
0.1 0.101 0.106 0.204 0.099 0.102 0.187 
0.2 0.177 0.184 0.270 0.169 0.168 0.254 
0.3 0.237 0.244 0.319 0.231 0.225 0.300 
1 0.457 0.466 0.500 0.426 0.423 0.457 
2 0.584 0.592 0.607 0.541 0.534 0.542 
3 0.650 0.657 0.666 0.600 0.591 0.600 

10 0.799 0.810 0.804 0.728 0.716 0.720 
20 0.857 0.860 0.850 0.773 0.761 0.770 

Results obtained by the variational method based on local potential using the 

Results obtained by Biot's variational formulation [ l l l ] .  
boundary layer approach [150]. 

' Exact solution of Landau [151]. 
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A comparison of the nondimensional melting rate obtained by the present 
method with the exact results of Landau [I511 and the variational solution 
obtained by Biot and Doughaday [ I l l ]  is presented in Table 11. I t  is seen 
that the results obtained by the local potential formulation using the 
boundary layer approach are quite accurate and are closer to the exact 
solution than the corresponding results of [ I l l ] ,  except for the case of 
nz = 0 which is of very little practical importance. 

Gupta [I521 has extended the above analysis to the case of heat conduction 
in an ablating solid with variable thermal properties, using a very general 
law of dependence of thermal conductivity on temperature as applicable to 
glassy materials, and has shown that as a particular case of this law, his 
results are quite comparable to those of Biot and Agrawal [112]. The 
boundary layer approach, in conjunction with the local potential formulation, 
has been used by Schechter [153, p. 2051 for the analysis of transient 
temperature distribution in the entrance length of channels. In  another 
application of the same method Gupta [I541 has analyzed the problem of 
transient temperature distribution in a transpiration cooled half-space with 
variable conductivity and specific heat. 

4. Relation to the Method of Weighted Residuals atid Classical Variational 
Calculus 

Finlayson and Scriven [ 1261 have critically examined the mathematical 
formulation of the variational principles of Biot [I081 and [I091 and that 
of Glansdorff and Prigogine [137-139]. They have shown that the above 
variational principles are outside the scope of classical variational calculus 
and are closely related to the method of weighted residuals. These authors 
have therefore recommended [8, 126, 1551 the direct use of the method of 
weighted residuals in the nonlinear problems of nonequilibrium processes. 
While it is agreed that the variational methods of Biot and of Glansdorff and 
Prigogine have a close relation to the method of weighted residuals, it is 
felt by the present author that the physical content of these variational 
methods is a definite advantage over the method of weighted residuals. 
Further, such a formulation has led to the extension of classical variational 
calculus to enable i t  to bring dissipative systems into its fold. The direct 
methods of the classical calculus of variations and the method of weighted 
residuals can be understood within the more general framework of the 
self-consistent scheme presented by Glansdorff and Prigogine [ 1371. 

c. OTHER VARIATIONAL FORMULATIONS AND THEIR APPLICATION 

A problem in heat transfer which suggests the use of classical variational 
calculus is that of finding the fin geometry for maximum dissipation of heat 
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in a fin of given weight. I t  may be appreciated that the problem stated above 
is a maximization problem in contrast to the problems of continuous non- 
equilibrium systems where the recourse to variational calculus was taken only 
to make available the direct method of the calculus of variations for their 
solution. The problem of fin geometry with maximum dissipation has been 
dealt with in  [156-1581. 

As in other branches of physics, classical variational calculus has been 
used in heat transfer for the approximation of eigenvalues. Using the Ritz 
method, Sparrow and Siege1 [ I591 have determined the lower eigenvalues 
of the eigenfunctions associated with convective laminar heat transfer in the 
thermal entry region of ducts. In the case of circular and parallel plate 
channels, the problem of convective heat transfer can be reduced to the 
solution of a Sturm-Liouville type of ordinary differential equation. Pnueli 
[I601 has used the variational method for the analysis of forced convection 
heat transfer in ducts of arbitrary cross section. Tsoi [I611 has used the 
variational method in conjuction with the integral transfornis to the problem 
of unsteady convective heat transfer in tubes of arbitrary cross section, and 
considered the cases of circular and plane parallel channels in detail. 

Morse and Feshbach [77] have presented a scheme of formulating adjoint 
variational principles for dissipative systems governed by linear nonself- 
adjoint equations. The scheme envisages the introduction of functions 
governed by the equations and initial and boundary conditions adjoint to 
ones governing the original functions. Physically the adjoint to a given 
system means a system with negative dissipation equal to the dissipation in 
the original system. If the two systems are considered together the entire 
system is a conservative system. Thus the formulation [77] is equivalent to 
artificially reducing a dissipative system to a conservative one for which a 
potential can be formulated. Based on this idea, Nichols and Bankoff [I621 
have formulated the adjoint variational principle for nonstationary con- 
vective diffusion. 

A general discussion of variational principles for approximate solution of 
the boundary value problems is given by Stallybrass [I631 along with a 
bibliography of similar works. 

Gurtin [ 1641 has formulated variational principles for linear initial value 
problems of wave and heat conduction equation by first reducing these 
problems to equivalent boundary value problems through an integro- 
differential equation containing the initial condition implicitly and then 
deriving the variational principle for these boundary value problems. The 
variational principle of Gurtin [I641 has been developed and applied in heat 
conduction problems by Ainola [I651 and generalized for very general types 
of boundary conditions by Rafalski and Zyszkowski [166]. 
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V. Methods Related to the Solution of Integral Equations 

A. INTEGRAL EQUATIONS IN RADIATIVE HEAT TRANSFER 

The most frequent use of the methods of solution of integral equations has 
been made in the theory of radiative heat transfer. This is so as the transfer 
equation for radiative flux, by its very nature, is formulated as an integro- 
differential equation, which in  some special cases is reducible to an integral 
equation. Excellent surveys in radiative heat transfer have recently appeared 
[I671 and [168], listing the recent contributions to the field as well as the 
mathematical methods which can be used in the solution of the integral 
equations governing the problems in this field. A detailed account of these 
methods is given by Chandrashekhar [ 1691, Kourganoff [ 1701, and Busbridge 
[ I711 along with some very sophisticated mathematical techniques for 
obtaining exact solutions to radiative transfer equations in some special 
cases. In the case of radiant interchange between grey surfaces and in grey 
diffuse enclosures with isothermal surfaces and nonuniformly distributed 
radiant flux, the problem of determining the temperature distribution 
reduces to solving a Fredholm type integral equation. Various methods of 
solutions in this case are discussed in the review by Sparrow [I721 and by 
Howell and Siege1 [173]. The methods of solution include numerical integra- 
tion, the use of approximate separable kernels, approximate solutions by 
variational methods, and solution by the Taylor series expansion. Detailed 
information on these methods can be obtained in [174-1781. Carrier [I791 
has discussed two approximate methods, namely, the Substitute Kernel 
Method and that of Integral Equation Boundary Layers which are specially 
suited for the integral equations in radiative transfer. 

In view of the available literature cited above for the solution of integral 
equations of radiative heat transfer we will not endeavor to discuss any 
further the radiation problems as they concern this section on methods 
relating to the solution of integral equations. We would, however, present 
some examples from other fields of heat transfer where the partial differential 
equations have been converted to integral equations, with the purpose of 
using the methods available for the solution of such equations. 

B. REDUCTION OF OTHER HEAT TRANSFER PROBLEMS TO INTEGRAL EQUATIONS 

Boley [ 1801 transformed the partial differential equation of heat con- 
duction in a melting or a solidifying region to an integro-differential equation 
which was solved in series. Koh and Hartnett [I811 reduced the equations of 
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momentum and energy of laminar flow over a permeable wedge with suction 
to ordinary integral equations which were solved numerically by iteration 
procedures. The same approach has been used in [182, 1831 for a two- 
component compressible boundary layer over a surface with temperature 
dependent physical properties. Tolubinskiy [184, 1851 has given a very 
general integral equation approach to  transfer processes assuming finite 
velocity of diffusion. Provided the solution of the problem for an infinite 
space is known, the corresponding solution for any region can be constructed 
by this method. Grinchenkov and Ulitko [186] reduced the problem of the 
steady temperature distribution in a semi-infinite medium, with its surface 
maintained at zero temperature and with the disk 0 < r < a or the ring 
rl < r < r2 kept at a constant temperature to a Fredholm integral equation 
of the second kind. Vasilevski [ 1871 reduced the nonlinear parabolic equations 
of simultaneous heat and mass diffusion under unsteady conditions to a 
set of two ordinary integro-differential equations by using Boltzman’s 
similarity transformation, and obtained approximate analytic solutions to 
these equations. Patankar [188], using a two-parameter profile for the 
temperature, has reduced the analysis of heat transfer across turbulent 
boundary layers with step change in temperature at the wall to two integral 
equations for determining the parameters in the profile. These integral 
equations have been solved for the laminar velocity profile, the seventh 
power law velocity profile, and for the universal law of the wall due to 
Spalding [ 1891. Savino and Siege1 [ 1901 derived an integral equation for the 
temperature distribution in the solidified layer formed in a moving warm 
liquid on to an isothermal cold surface. 

C. LIGHTHILL-VOLTERRA APPROACH 

Lighthill [loll, in a contribution to the theory of heat transfer in a 
boundary layer over a surface with variable temperature along its extent in 
the direction of flow, introduced a new approach based on the solution of 
singular integral equations of the Volterra type. This approach has since been 
used in many other applications and may therefore be rightly termed the 
Lighthill-Volterra approach. Using the linear approximation to the velocity 
near the surface in the laminar boundary layer, 

2.4 = ~W(~>.Y/P~ (146) 

Lighthill has shown that the value of the local heat transfer to  the wall is 
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where t,(.u) = f,(x) - t ,  and the integral in the above equation is a 
Stieltjes Integral used in the sense 

Jb;(l x) t / g ( t )  = f ( o ,  x)g(o) + j(r, x)g’(t)  ( l t .  j.: (148) 

The above formula Eq. (147) for heat transfer is in  the nature of a high 
Prandtl number approximation. With increasing t~ the thermal boundary 
layer gets thinner in comparison to the velocity boundary layer and therefore 
the linear velocity approximation Eq. (146) becomes more and more exact. 
Lighthill [ I O I ]  has pointed out that in the above formula p and p only appear 
as the product. If this product is constant, the above low-speed solution 
holds for all Mach numbers. Thus for a flat plate where 

T,(.Y) = 0.332(ppU,/x)”2, ( 149) 
the above formula finally simplifies to 

Qw(x) = 0 . 3 3 9 ( K , / ~ ) t ~ ” ~ ( ~ i p U , ) ’ ~ ~ . v -  1’4 

f 

Tifford [I911 has given a method for the application of Lighthill’s method to 
boundary layers with a pressure gradient by replacing the value of T~( .Y)  in 
Eq. (147) by the value which takes into account the pressure gradient. 
Important contributions have been made by Spalding [192], Liepmann [193], 
and Davies and Bourne [I941 to improve the accuracy of Lighthill’s method 
and to extend i t  to boundary layers with pressure gradients. lllingworth [I951 
and Lilley [I961 have extended the method to compressible boundary layers 
with pressure gradients and heat transfer. A concise account of these methods 
is given in [197]. 

The application of Lighthill’s integral relation tochemically active boundary 
layers with surface reactions has been made in [ 198-2021. Frank-Kamenetskii 
[200] has given the results of numerical integration of an equation quite 
similar to Eq. (150). These equations determine the concentration of a 
component in a boundary layer with reactions of orders 4 and 2. Chambre 
[203] and Mann and Wolf [204] have reduced the solution of the problem 
of heat conduction in a semi-infinite solid with nonlinear boundary conditions 
to an exactly similar type of integral equation. The inverse problem of heat 
transfer has been reduced in [205] and [206] to the solution of a singular 
integral equation of the Volterra type. A similar integral equation which 
arose in the discussion of the effect of a discontinuity of surface catalycity on 
the boundary layer flow of a dissociating gas has been treated by a series 
method and also numerically in [207]. Perelman [208] has shown that the 
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solution of the conjugate problem of heat transfer, namely, the problem 
where the energy equation of the fluid and the heat conduction equation 
within the solid wall are solved simultaneously with matching of temperature 
and flux at the interface, can be reduced to the solution of such equations. 

I t  may be pointed out that the series solutions to the above type of equations 
have small radii of convergence and are useful only for very small values of 
the argument. The basic difficulty in obtaining the analytic solution of the 
above type of equation for large or moderately large argument is the fact 
that the asymptotic form of the solution cannot be directly substituted, as it 
is necessary to consider the contribution of the integral near the lower limit. 
It is thus evident that in such equations the asymptotic solution for x -, co 
depends upon the behavior of the solution near x + 0. These equations are 
therefore usually solved by numerical techniques. In view of the very wide 
application of these integral equations in heat transfer it is, however, 
essential to find methods to obtain their analytical solutions for large 
arguments. In the following we propose to discuss two methods of doing so. 

D. PERELMAN'S ASYMPTOTIC METHOD 

Perelman's [208, 2091 method is based on the Mellin transform for 
finding asymptotic solutions to the linear singular integral equations of the 
type 

a(x)4(x) = g(s) + k(.u/y)s*f4(y) f l y ,  (151) 

where o(.Y) is a finite sum 

or a linear differential operator of the form 

O ( S )  = c f//.V'I (Inljd.unr, ( 153) 

in  which case the above integral equation (151) would become an integro- 
differential equation. Defining the Mellin transform off(.\-) as 

I 

F ( S )  = f ( s ) . uS- '  cis, (154) j: 
and applying this transform to both sides of Eq. (151) with the expression 
on the right-hand side of Eq. ( 1  52) for a(.\-), we obtain the difference equation 

(155) x n / @ ( S  + = G(S) + K ( S  + CC)@(S + c( + ,5' + 1) 
1 
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valid in some region of the S-plane. Without loss of generality we may assume 
that the above relation holds in  some strip 0 < Re S < / I ,  where / I  is some 
positive number. 

The crucial step in the method of Perelman [208, 2091 is the introduction 
of a new function Y ( S )  such that 

O(S + 6) = O(S)Y(S )  Re S > 0, ( 1  56) 

where 6 is the least of the numbers y I  and CI + p + 1 .  In terms of the new 
function Y ( S )  defined in Eq. (156), Eq. (155) can be rewritten as 

C u,Q(S + y I  - S)Y(S + 7, - 0 )  = G(S) + K ( S  + CI)Q(S + cy + p + 1 - 6) 
1 

Y(S + cy + p + 1 - 6 ) .  (157) 

The function Q(S) in Eq. ( I  56)  is chosen such that the inverse Mellin transforms 
of all the functions and Q(S + SI + /I - 6 + I )  exist and vanish exponenti- 
ally. For this, the necessary condition is that the above function not possess 
any singularity in the half-plane Re S > 0. Whether this condition would be 
sufficient also depends on the choice of Q(S). If we now search for  the 
function i)(.v), the inverse Mellin transform of Y ( S )  in  the form 

the coefficients C,, are obtained from Eq. ( I  57)  as recurrence relations and the 
required function 4(x) can be determined by applying the inverse Mellin 
transform to Eq. ( 1  56) .  

To bring out further the salient points of the method we propose to find 
the asymptotic solution of the Volterra type integral equation 

This equation, except for a constant in the second term on the right-hand 
side, is the one to which the partial differential equation of one-dimensional 
heat conduction with a Newton type radiation condition on its surface can 
be reduced [203]. The exact solution of the above equation is well known 
and can be obtained by application of the Laplace transform. This solution 
is 

( 1  60) 
where 

erfc (x) = ( 2 / J i )  (161) 

4(x) = exp ( n s )  erfc ( n . ~ ) " ~ ,  
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Taking the Mellin transform of the above equation, where unity on the 
right-hand side is represented as 1 = lim exp (- E&), we obtain 

&-+O 

Equation (162) is valid in the strip 0 < Re S < 4 of the S-plane. A new 
function Y(S) is now introduced as 

or 

It may be noted here that the function Y(S) is not unique. Basically it has 
been introduced to remove the singularity of the right-hand side of Eq. (162) 
at S = +. This explains the factor in the denominator on the right-hand side 
of Eq. (163). Other factors are such that in the equation obtained after 
substituting for @(S + 9) from Eq. (164) in the Eq. (162), each term has an 
inverse Mellin transform. It is here that the nonuniqueness is being introduced. 
The particular choice of the factors in Eq. (163) appears to have been made 
so as to lead to the desired expansion. Thus in terms of Y(S) Eq. (162) can 
be written as 

Introducing an expansion of the type Eq. (158) for $(x) and substituting 
the Mellin transform of Eq. (166) in Eq. (165) it can be seen that the difference 
equation (165) would hold if 

23 

b = 4, 
and also the recurrence relations 

from which we obtain, in  view of Eq. (163), 

which is the expansion of the exact solution given in Eq. (160) for x -+ 00. 
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The above method has been used by Perelman [208] for the solution of a 
number of problems where the solution of the energyequation in the boundary 
layer has been solved in conjunction with the heat conduction equation 
within the solid in contact with the fluid. Kumar [210] has used this method 
in the solution of the conjugate problem of heat transfer in a laminar boundary 
layer with injection from the surface of a solid body of semi-infinite extent 
over which the boundary layer exists. 

E. A NEW METHOD BASED ON THE MELLIN TRANSFORM 

Recently Kumar and Bartman [21 I ]  suggested a new method for the 
asymptotic solution of such equations both near the origin and also for 
large s. This method has now been developed by Kuniar [212] and applied 
to the solution of various problems in nonlinear heat conduction and 
surface chemical reactions in compressible boundary layers. The method is 
illustrated below by the solution of Lighthill's problem [I011 of finding the 
radiation-convection equilibrium teniperature distribution in a strip. 
Neglecting the conduction in the strip, we are interested in  determining the 
temperature distribution such that the energy radiated out from the strip, 
according to the Stefan-Boltzmann law, is just compensated for by the 
convective flux received by it. Using Lighthill's integral relation [IOI] the 
problem is reduced to the solution of the equation 

where 
F ( Z )  = T(Z),'T,. 

The above equation is to be solved for the boundary conditions 

Applying Abel's transforniation formula [ 174, p. 1581 and integrating once 
using Eq. ( 1  72) we can write 

Formally, the Mellin transform of Eq. (174) can be written as 
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where the operator M(F) stands for the Mellin transform J F(Z)Z"-' dZ 

of F(Z). Further we would use M - ( F )  and M+(F) to denote the functions 
0 

jo1F(Z)ZS-l dZ and F(Z)Z"-' dZ, respectively. Thus Eq. (175) can be 

written as 

M-(@) + M+(@) = (J?/n)P($ - *S, 3)[M-(F4Z-') + M+(F4Z-')]. (176) 

If we assume 
m 

@ ( Z )  - AnZ"" Z 3 0, (177) 
n = l  

then in the half-plane Re S < --a we write 

For this functional equation to be valid the poles and residues of the two 
sides of Eq. (178) must coincide [213]. Taking the Mellin transform of Eq. 
(177) and substituting it in the left-hand side of Eq. (178), we get by equating 
at the first pole of the two sides of Eq. (178), a = 1 ,  and equating the 
residues the successive poles S = -a,  -2a, ... , the following recurrence 
relation for An 

A 2r(2) 4A, = -7.252, 
W U 3 )  

2 -  

so that for Z -, 0 we have 

F(Z) = 1 - 1.4612 + 7.252Z2 - 46.46Z3 + ... . (179) 

To obtain the solution for large Z we can write 

M+(@) = (&/n)S(S - SS, +)M+(F4Z-'). (1 80) 

Assuming 
m 

F ( Z )  - c B"Z-nb, 
n =  1 
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and proceeding exactly as above, we get h = & and 

BI4 = f ,  

4BI3B2 = t[r(im)ir(t)l, 
4BI3B3 + 6BzZBL2 = +[r(+)l-($)8’F($)]Bz, 

4B4BI3 + 12B3B2Bl2 + 4B23B, = +[r($)r(t),’r(t)]B3, 

giving for Z -+ co 

F(Z)  - 0.8409Z-”4 - 0.1524Z-1’2 - 0.0195Z-3’4 - O.O038Z-’. (182) 
The solutions in Eqs. (179) and (182) are exactly the same as obtained 
by Lighthill [I011 by a rather complicated order-of-magnitude analysis of 
the integrals. It should be noted that the application of Abel’s transformation 
formula to Eq. (170) and an integration thereafter to include the boundary 
condition at Eq. (172) within the new integral equation (174) is an important 
step in the present technique which takes into account the dependence of the 
solution for large 2 on the solution for Z + 0. In contrast to this, Perelman’s 
method [208, 2091 for finding the asymptotic solution for Z -+ co cannot 
take into account the boundary condition at Z -+ 0. It  has been shown [212] 
that the method can be applied to a large number of problems of conductive 
and convective heat transfer and also to  boundary layers with chemical 
reactions, with useful analytical results obtained for problems where up 
until now only numerical solutions were available. Kumar and Trivedi [214] 
have further applied the technique to the boundary layer flow ofa dissociating 
gas with discontinuous catalycity of the wall and obtained analytic solutions 
showing excellent agreement with the numerical results of [207]. 

VI. Methods Based on the Use of the Complex Variable 

A. SOLUTION OF HARMONIC A N D  BIHARMONIC EQUATIONS 

Methods based on the use of the complex variable were developed by 
Muskhelishvili [215] for the solution of the boundary value problems in the 
theory of elasticity, and have been extensively used since then by other 
authors. Recently these methods have been applied to obtain the solution to 
the problem of forced convection heat transfer of a fluid through a channel 
of arbitrary cross section. This method essentially involves the solution of a 
harmonic or a biharmonic equation with complex independent variable. 

Tao [216-2181 was the first to use the above method in the analysis of 
forced convection heat transfer in channels of various shapes with fully 
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developed laminar flow, in the presence of heat sources with a constant 
temperature gradient along the axis of the channel. Consider a steady fully 
developed laminar flow in the channel of cross section D bounded by a 
closed curve r. Let the axis of the channel be in the 2 direction. The momen- 
tum and energy equations for a constant property dissipating fluid can be 
written as 

= Czu - M - K '[("Y ax + r$)I, 
with the boundary conditions 

u = 0, t = t ,  on r, (185) 

where the second and the third terms on the right-hand side of Eq. (184) 
represent respectively the source function and the dissipation function. It 
has been shown by Tao [216, 2171 that the solution of the above problem, 
neglecting the third term on the right-hand side of Eq. (184), reduces to the 
solution of the biharmonic equation 

and the harmonic equation 

with the respective boundary conditions 

and 
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0, = T2 + $JjM(z,i)dzdi, 

and TI and T2 are the two components of T = t - t ,  such that TI is inde- 
pendent of the heat source function M and T2 is independent of the velocity 
field u. The general solution of Eqs. (186) and (187) can be written as 

0, = + Z T ( 4  + ll/W + iw, ( 192) 

02 = L(z) + X ( Z ) ,  (193) 

where the bar denotes the complex conjugate, +(z) and $(z)  in Eq. (192) are 
two holomorphic functions in D satisfying the boundary condition Eq. (188), 
and A(z) is another holomorphic function satisfying the boundary condition 
Eq. (189). It has been shown [216] that the method outlined above can be used 
in conjunction with conformal mapping for the channel bounded by an 
arbitrary noncircular closed contour. This was illustrated in the case of 
channels with elliptic and triangular cross sections. At [217] it has been 
shown that the commonly used technique of equivalent circular duct leads to 
unreliable results. Shastry [219], using the methods described in [216-2181, 
obtained the mean values of the Nusselt number, the mean velocity, and the 
mean mixed temperature in the case of cardoid and ovaloid (circular profile 
with two opposite flat sides) forms of channels. 

Tyagi [220, 2211 has generalized all earlier works and found solutions for 
channels of various shapes with flowing fluid having heat sources and 
dissipating energy due to internal friction, and therefore considered the 
problem represented by the complete equations (183) and (184). For the 
case of gases flowing through the channel [220] yet another term repre- 
senting the compressional work was introduced on the right-hand side of 
Eq. (184). Thus in [220] the solution has been obtained for the problem 
described by the momentum equation (1 83), the energy equation 

V2t  = C2u - M - - ( 194) 

and the boundary conditions Eq. (185). The case of temperature dependent 
viscosity has been considered in [222] and the Newton type radiation boundary 
condition in [223]. 
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B. SCHWARZ-CHRISTOFFEL TRANSFORMATION 

1 .  The Transformation Formula 

For studying steady-state heat conduction problems in two-dimensional 
regions with nonclassical boundaries, the method of transforming such 
regions in one complex plane into the upper half of another complex plane 
offers a very powerful tool. A very general method of transforming an 
n-angled polygon in the z-plane with exterior angles 41,  42, ... , on to 
the upper half of the w-plane is the Schwarz-Christoffel transformation 
formula [77, p. 4451 

dz/dw = A(w - b,)-'""(~ - bz)-'"" .... (195) 

Integrating both sides of Eq. (195), we get 

z = z0 + A ( W  - b,)-'""(w - b2)-dzia ... dw, (196) s 
where zo, [ A [ ,  and Arg(A) are chosen to fix the origin, scale, and orientation 
of the polygon and 6, , 6, , . . . are the points in the w-plane which correspond 
to the corner points of the polygon. If one of the corners is placed in the 
w-plane at infinity, the corresponding factor in the expression on the right- 
hand side of Eq. (195) is neglected. 

Having found the appropriate transformation to transform the region of 
interest in the z-plane to the upper half of the w-plane the solution of the 
steady-state two-dimensional heat conduction equation 

can be found by the application of Poisson's integral [77, p. 3711. Thus the 
solution of Eq. (197) in the upper half-plane with the boundary condition 

t = f ( u )  v = 0 (198) 
at the point u , ,  u ,  is given by 

2. An Illustration 

While studying a problem suggested by the probe method of determining 
the conductivity of rocks and soils, Kumar [224] has used the Schwarz- 
Christoffel transformation to find the steady-state temperature distribution 
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I I 

in a doubly infinite strip of finite width with a rectangular cut at one of its 
edges, assuming a constant temperature over the boundary of the cut and 
zero temperature on the rest of the boundary. The region of investigation 
assumed to be in the z-plane and the corresponding upper half of the w-plane, 
to which the above region has been transformed, are illustrated in Fig. 1. 

I t 

FIG. 1. Transformation of a doubly infinite strip in the z-plane with a symmetric 
rectangular cut to the upper half-plane. (Reproduced from Kumar [224].) 

Let the points 0, g, g-ib, and 00 in the z-plane correspond to the points 
0, 1, l/k, and Ilk, in the w-plane, and therefore from symmetry the points 
-g ,  -g-ib, -a correspond to -1, - l /k ,  and - l /k l  respectively. From 
the Schwarz-Christoffel transformation formula Eq. (195) we obtain 

- 112 

dw 

(w - 1)ll2 l/k, > l / k  > 1. (200) 

Integrating both sides of Eq. (200) with respect to w, we get 

(1 - w y  n w  
- k12W2)(1 - k Z W 2 ) 1 / 2  + 

where 
C' = C/(k,Zk). 

since the origins in the two planes correspond, we get in Eq. (201), D = 0. 
The integral on the right-hand side of Eq. (201) can be evaluated in terms of 
elliptic integrals and functions. Further, C' can be determined by noting that 
as we pass in the w-plane through the point l ik , ,  there is an abrupt jump in 
the value of z by an amount id. Thus 
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9 (203) 
&-+0 

and we get, on substituting the value of C' from Eq. (203) in Eq. (201), 

2d k2cn u sn u 
z = -[ II dn u (204) 

where c( is defined by the relation 
k i / k  

a = sn-' (kl/k) =I dw/(l - w2)'/'(1 - k2w2)l12 , (205) 
0 

5 = sn-'w, 
and 

and 

is the Jacobi elliptic integral of the third kind [225]. There are now two 
unknowns left, namely, k, c1 which can be determined by connecting them 
with the known length ratios g /d  and b/d. Using some properties of elliptic 
functions [225] we get 

g/d = 

b/d = 
k2cn u sn "3 + ; . 

(210) dn u 

where K and K' are the complete integrals of the first kind with moduli k 
and k', respectively. Thus 

1 

K =s 0 dw/(l - w2)1/2(1 - k ' ~ ~ ) " ~  (211) 

fl 
K' = J dw/(l - ~ ' ) ' / ~ ( 1  - k'2w2)1/2 

0 

In a particular problem, one has to choose k and c1 such that these correspond 
to the given values of gld and bld. 
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To determine the temperature along the axis of symmetry we find various 
points on the u-axis corresponding to various values of y in the z-plane. For 
this, writing iu for w we get 

[ = ip = F(iv, k) = iF(u/(l + 02), k'), (2 13) 
and the corresponding value of z is given from Eq. (204) as 

Equating the imaginary parts of the two sides of Eq. (204) we get 

- Z(a) p + tan-' 1 
-2 Em( - l)"qm2 sin (rrmci/K) sinh (rrmp/K) \ 

1 + 1 ° C  - l)"y"' cos (~rma/K)  cosh (.mp/K), (2 5 

where 
q = exp (-7cK'/K). 

The solution of the steady-state two-dimensional heat conduction equation 
(197) in the w-plane, with the real axis between the points -l/k and Ilk 
maintained at a given temperature to and with the rest of the boundary kept 
at  zero temperature, is given from Eq. (199) for u = 0 

(2 16) 

For a specific case in which b/d = 0.5533 and g/d = 0.0122, corresponding 
to the values k = sin 20°, and c1 = 0.972, the temperature distribution along 
the axis of symmetry in the w-plane is tabulated in Table 111. 

( t i to)  = (2/11) tan-' (Ilku). 

TABLE 111 

TEMPERATURE DISTRIBUTION ALONG THE AXIS OF SYMMETRY OF THE REGION 
SHOWN IN Z-PLANE IN FIG. 1 (from Kumar [224]) 

Yld V t l to  Yld V t l to  

0.0032 0.0963 0.9791 0.0491 1.1917 0.7533 
0.0065 0.1763 0.9616 0.0607 1.4281 0.71 11 
0.0099 0.2679 0.941 8 0.0759 I .7320 0.6595 
0.0136 0.3660 0.921 1 0.0971 2.1445 0.5970 
0.0176 0.4663 0.8993 0.1276 2.7475 0.5197 
0.0221 0.5773 0.8760 0.1724 3.7320 0.4229 
0.0270 0.7002 0.8501 0.2389 5.6713 0.3028 
0.0331 0.8391 0.8219 0.3322 11.4301 0.1595 
0.0402 1.0000 0.7900 0.4470 03 0 
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3. Further Applications 

Balcerzok and Rayner [226] used conformal mapping to obtain the 
steady-state temperature distribution and heat flow in three cases of pris- 
matic bars: (i) n-sided regular polygon with a small circular hole in the 
center, (ii) variable aspect-ratio rectangle with small circular hole, and (iii) 
elliptic cross section with confocal elliptic hole. Sholokhov [227] has used 
the Schwarz-Christoffel transformation for solving temperature field 
problems for complicated regions bounded by straight lines. Varshavski 
er al. [228] obtained the steady-state heat flow and the temperature distribution 
in a two-dimensional rectangular configuration with mixed boundary 
conditions. Siege1 [229] has used the same method to determine the shape 
of a two-dimensional solidified layer formed on a cold surface immersed in 
a warm flowing liquid. The liquid is assumed to  supply heat by convection 
to the frozen interface and the shape of the frozen layer adjusts itself such 
that this energy is conducted through the layer to the cold surface. Laura 
and Chi [230] have described an approximate method based on the complex 
variable and the collocation method to generate a solution to the unsteady 
heat conduction equation in a region whose cross section can be conformally 
mapped on to a circle. Transformation formulas for transforming many 
nonclassical regions of practical interest on to a unit circle or the upper 
half-plane are given in [231, 2321. 

C. WIENER-HOPF METHOD 

In many practical problems of heat transfer one is required to solve the 
unsteady heat conduction equation with mixed boundary conditions. For 
example, the temperature may be assigned over a part of the boundary, 
while the rest of the boundary is subjected to a prescribed flux. Application 
of the Fourier transform or a combination of Laplace and Fourier transforms, 
taking into account the mixed boundary conditions, would usually lead us 
to the following mathematical problem. 

Find the unknown functions b+(p) and $-(p) satisfying the functional 
equation 

A(P)b+(P)  + N P ) $ - ( P )  + C(P> = 0, ( 2  17) 

where this equation holds in the strip /L < P < /?+, -a < a < co of the 
complex p-plane ( p  = DC + iB) where the function q5+(p) is regular in the 
half-plane > p- and the function $-(p) is regular in f l  < p + .  The 
functions A(p), B(p), and C(p) are given functions of p, regular in the strip 
B- < P < P + .  

The above problem is solved by what is known as the Wiener-Hopf 
method [233]. 
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The most important step in the Wiener-Hopf method is to find a function 
K+(p) ,  regular and nonzero in p > f i - ,  and K _ ( p ) ,  regular and nonzero in 
p < p + ,  such that 

A ( P ) l W )  = K+(P)/K-(P). (218) 

K + ( p ) ,  K - ( p )  can be determined by inspection or in many cases with the 
help of certain theorems [233, p. 131. Substituting for A ( p )  from Eq. (218) 
in Eq. (2 17) we get 

K+(P)4+(P)  + UP)$&) + K-(P)C(PYBm = 0. 

K-(P)C(P)!B(P) = C-(P) + C+(P>, 

J(P) = K+(P)$+(P) + C+(P> = -K-(P>$-(P)  - C-(P), 

(2 19) 

(220) 

(221) 

If we can put 

we would be able to arrange Eq. (219) to define a new functionJ(p) such that 

where C+(p)  is regular in  p > p- and C ( p )  is regular in p < 0,. The 
newly defined function J ( p )  is valid in the strip p- < p < f i +  and it can be 
analytically continued throughout the p-plane. Thus J ( p )  is some polynomial 
and Eq. (221) gives 4 + ( p )  and $ - ( p ) .  

Let us see how the above problem appears in the context of transient heat 
conduction in the half-space -a < x < 03, y 2 0 with mixed boundary 
conditions at the boundary y = 0. The problem is stated as 

at a2t  a2 t  
= ax-2 + a j  T > 0, - C Q  < X < CQ, y 3 0, (222) 

with initial condition 

and the boundary condition 
t(x, y ,  0 )  = 0 

r(x, 0, T )  = exp ( - x ) ~ ( T )  x > 0,  (224) 

at(x, 0, T ) p y  = 0 x < 0. 

This problem has recently been studied by Rutner and Skryabina [234] and 
the treatment given in the following closely follows this work. Defining the 
Laplace transform i off  with respect to T as 

and the Fourier transform U(y)  of i with respect to the variable x 

V(Y> = J- i(x, y )  exp (ipx) dx - I < f i  < 1 (226) 
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and applying in succession these transforms to Eq. (222) and taking into 
account the conditions Eqs. (223) and (224) we get 

($ - y 2 )  U ( y )  = 0 -1 < p < 1 

and 

U+(O) = F(k2)/J&(1 - ip) p > I ,  k2 = s, k = k ,  + ik2,  (228) 

U q o )  = 0 = (dUjdy) l y = o ,  
where 

y 2  = k 2  + p z  Re y > 0, 

F(s )  = f(7) exp (-ST) d~ Re s > go, (23 1) I: 
U + ( y )  = (l/dg)lm f ( x , y )  exp ( i p x )  d x  > - 1,  (232) 

0 

0 

U - ( y )  = (I/,/%){ f ( x , y )  exp ( i p x )  dx  /3 < 1. (233) 

Taking into account the fact that the solution remains finite, we have the 
solution of Eq. (227): 

- w  

Ur,(O) + U-’(O) = - y A ( p ) ,  

U;(o)  + UL(0) = -y[U+(O) + U-(O)]. 

(236) 

(237) 
whence 

Substituting in Eq. (237) the values of U+(O) and U-’(O) from Eqs. (228) 
and (229), we obtain the functional equation 

U‘+(O) + ( p 2  + k2)112U-(0)  = ( p 2  + kZ)1’2F(k2)/&(ip - 1). (238) 

This equatiofmust be solved for U+’(O) and U-(O). Thus we are faced with 
a problem exactly parallel to that of determining the functions 4 + ( p )  and 
$ - ( p )  from Eq. (217). Equation (238) should be valid in the strip -m < 
p < m of the complex plane p ,  where m = min [ I ,  k ] ,  U‘+(O) being regular 
in p > -m and U-(O) in the half-plane p < m. Since we can write 

y = ( p  + ik)”2(p - ik)”2, (239) 
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where ( p  + & ) ‘ I 2  is regular and has no zeros in p > - k l  and ( p  - ik)’12 is 
regular and has no zeros in half-plane p < k ,  , we can write Eq. (238) in the 
form 

( p  + ik)‘/2 ‘ 
where the first member on the left-hand side of Eq. (240) is regular in 
f i  > -m and the second member is regular in the half-plane /? < m, while 
on the right-hand side 

( p  - i k ) ’ / ’ F ( k 2 )  

(ip - l ) \& do) = 

is regular in the strip -m < p < in. The function + ( p )  defined in Eq. (241) 
can now be easily divided into two parts 4 + ( p )  and 4 - ( p )  such that 4 + ( p )  
is regular in f i  > -m and # ~ - ( p )  is regular in p > m. This can be achieved 
by application of the theorem given in Noble [233, p. 131. Thus 

( p  - jk-1’2 - (- j - jk)’ /2  ~ ( k 2 )  

(243) 
( i P  - 1) JG ’ 

4 - ( P I  = 

We can thus define J(p)  regular i n  - m  c < m, which can be analytically 
continued in the entire p-plane. J ( p )  is therefore a polynomial. From the 
condition U i ( 0 )  = 0 a s p  -+ CO, it follows that J ( p )  -+ 0 a s p  -+ co. This can 
happen only if J ( p )  = 0 and thus we have 

W O )  F ( k 2 ) ( - i  - i k ) 1 / 2  

( p  + ik)1/2 - JZr(ip - 1) ’ 
J ( P )  = 

F(k2)[(  - i - i k ) ’ /2  - ( p  - ik)”2] 

J % ( i p  - 1) 
= - ( p  - i k ) ’ W - ( O )  - 

or 

and 

(244) 
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Applying the inverse Fourier transform to Eq. (244) we get for x > 0, and 
for the special case off(7) = 1 in  Eq. (224). 

The application of the inverse Laplace transform to Eq. (246) gives 

where H(x, z) is the inverse Laplace transform of the right-hand side of 
Eq. (246). Thus the original problem stated in Eqs. (222)-(224) with mixed 
boundary conditions has been reduced to an ordinary heat conduction 
problem described by the differential equation (222), the initial condition 
Eq. (223), and the boundary condition 

at(x, 0, T y a y  = o x < 0, 

= - H ( x ,  7) x > 0, (248) 
and can therefore be solved, for example, by the method of Green’s function 
[lo, p. 3531. 

The Wiener-Hopf method has been used by Horvay [235] for finding the 
temperature distribution in a slab moving from a chamber at one temperature 
to another at a different temperature. The corresponding case of a solid 
circular cylinder has been treated in a similar fashion in [236]. Sih [237] has 
reduced the problem of the steady temperature distribution in an infinite 
region with lines of discontinuity (for example cracks) to the solution of the 
Hilbert problem [I761 using complex variables, and has given closed form 
solutions to a number of problems of practical interest. 

VII. Special Methods for the Solution of Partial Differential Equations 

A. METHOD OF CHARACTERISTICS 

The method of characteristics in the solution of hyperbolic partial differ- 
ential equations is well known and has been applied to problems of super- 
sonic flow [238]. Siege1 [239] has shown that the unsteady free convection 
equations of momentum and energy, when placed in integral form (Karman- 
Polhausen integral method) with a parabolic profile for temperature and a 
cubic one for velocity, are hyperbolic in nature and he therefore applied the 
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method of characteristics to their solution. Two boundary conditions were 
considered for a vertical flat plate of infinite width and semi-infinite length, 
which is initially at  ambient temperature. These conditions were those of step 
rise in temperature of the plate and that of start of constant heat flux from 
the plate. 

A more interesting and a novel application of the method of character- 
istics was made by Siege1 and his colleagues in a series of papers [240-2421. 
They have made use of the method of characteristics, as applicable to the 
linear and quasi-linear partial differential equations of the first order [243, 
p. 3861, for various problems of unsteady forced convection in channels 
with the assumption of slug flow. The general method followed by them is 
illustrated below. We are interested in the solution of the unsteady equation 

of heat flow in the moving fluid with the assumption of slug flow. Equation 
(249) can be nondimensionalized to the form 

aT ii aT a2T 
- +--=z X > O ,  - 1 < Y < 1 ,  O > O ,  (250) ae urnax ay 

which is to be solved with the nondimensional boundary conditions 

T = 0 X = 0 for all 8 and Y ,  (251) 

T = 1 Y = + 1  for all X and 0, (252) 

a T p Y  = 0 Y = 0 for all X and 8, (253) 

where alum in Eq. (250) is given as a function [l + K(8)] of the non- 
dimensional time 8 from the solution of the transient equation of momentum 

with the assumption of slug flow (a being a function of time only). 
The starting point of the solution is the requirement that in the steady 

state, the solution should reduce to the known steady-state temperature 
distribution with slug flow in the channel [244] 

* (-1y 
n = ~  En 

T = 1 - 2 C -  exp (- E:X) cos (EnY),  (255) 

where En = (n + +)n. The solution of Eq. (250) is therefore assumed to be 
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such that in the steady state G, = exp(-E,ZX). When this solution is 
substituted in the energy equation (2501, we get 

aGn aGn - + (1 + K(O)] - = -E,*G,. ae ax (257) 

Applying now the method of characteristics we write three auxiliary differ- 
ential equations which are equivalent to Eq. (257). These equations are 

The first two terms in Eq. (258) yield a set of characteristic curves on the 
X-0 plane. The curves of interest are those starting a t  X = 0 and at an 
arbitrary value of 0 = eo. These characteristics are given by 

fX 

or 

where 
0 - 0, - S(0, 0,) = x, 

Equating the first and third terms in Eq. (258)  we get a relation for Gn as 
function of 0. Integrating we get 

0 - 00 = - ( I / E ~ ) l o g G ,  = H .  

X = H - S I ( 0 ,  H ) ,  

(261) 

(262) 

Eliminating 0, between Eqs. (259) and (261) we get a relation of the form 

where S,(O, H )  --f 0 as X + H.  Equation (262) is an implicit expression for 
H .  From Eq. (261), Gn are given by 

G, = exp (-E,ZH). (263) 

The final solution is 

m (- 1)" 
n = ~  En 

T = 1 - 2 C -  exp ( - E , ~ H )  cos (E,Y). 

For H -+ X ,  that is, for small values of S,(0,  H ) ,  the solution in Eq. (264) 
converges to the correct solution (255) in the steady state. 

Based on the method of characteristics and network analysis, Siege1 [242] 
has analyzed forced convection in a channel with variable wall heating as a 
function of axial position and time, taking into account wall heat capacity. 



56 I. J. KUMAR 

He has applied the method to the problem including uniform wall heating 
that varies sinusoidally in time, and heating varying sinusoidally with axial 
distance and exponentially in time. The method of characteristics set out 
above has been applied by Lindauer and Hsu [245] to analyze the unsteady 
heat transfer in MHD forced convect in a parallel plate channel, the 
transient being caused by a step change in axial pressure gradient or 
magnetic field. 

Jischke and Baron [246] have used parametric differentiation in nonlinear 
problems to introduce a real parameter characteristic along which one can 
integrate the parametrically differentiated equations. The method has been 
demonstrated in the case of a one-dimensional hypersonic radiating shock 
layer and in the solution of inviscid radiating gas flow in the stagnation 
region of a blunt body. 

B. A METHOD OF ANALYTIC ITERATION 

The solution of boundary value problems in regions where the entire 
boundary, or a part thereof, is not parallel to any of the coordinates in the 
specified coordinate system is not straightforward because of the difficulty 
in satisfying the given boundary condition on the boundary. The usual 
method of dealing with such regions is to transform them by a suitable 
transformation to the upper half-plane or to the inside of a unit circle, the 
field equations being transformed accordingly. The use of such trans- 
formations in some important problems in heat transfer has already been 
considered in Section V1,B. A method of analytic iteration called the method 
of Schwarz for the solution of Laplace’s equation in such regions has been 

F A 

FIG. 2. Region ABCDEFA, a rectangle ended by a semicircle. (Kumar and Achari 
12471.1 
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described in detail in [106, p. 6161. The technique consists in first breaking 
up the region into subregions, where the boundary value problem can be 
solved, and then iterating the solution in each of the subregions and matching 
the same, step by step, in the sub-subregion common to the subregions. 

Recently, Kumar and Achari [247] have extended the technique to 
parabolic equations and have proved the convergence of the process by 
showing that the iteration scheme is exactly similar to the iteration scheme 
for the solution of a system of integral equations in the “potential of double 
layers” of Mikhlin [175]. 

Consider unsteady heat conduction in the region ABCDEFA, Fig. 2, 
formed by the rectangle ACDF and the semicircle DEF. We are interested 
in the solution of the equation 

in the region ABCDEFA with the initial and boundary conditions 

t = 0 ,  T = o ,  (266) 

t = to,  T > 0 along DEF, (267) 

t = 0, T > 0 along ABC, (268) 

(269) 

aqay = o aIongBE. (270) 

atjay = 0, T > 0 along FA and CD. 

Due to symmetry we need only consider the half region BCDEOB with 

With center 0 we complete the semicircle EDE’. If t l ( r ,  4, T )  is the tempera- 
ture distribution in the region EDE’E and r2(x, y ,  t )  is the temperature 
distribution in the rectangle BCDOB, which we seek to determine, the 
boundary value problem for the nth approximation T,,n of TI which in 
nondimensional form is described by 

with initial conditions 

and boundary conditions 
T , , ~  = o e = o 

- = O  4 = 0 ,  O < R < C ,  
aT1, 
a4 

- = O  4 = 7 ~ ,  O < R < C ,  
8TI.n 
a4 

O > O  
0 < R < C 
0 < 4 < 7 C  

(271) 

e > 0, (273) 

e > 0, (274) 
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T ~ , ~  = $,,($, e) R = c, o < 6 < n, 0 > 0, (275) 

&($, 0) = I n = 1 (276) 

0) = 1 4 2  < < n, n 3 2, (277) 

where 

and 

= T2,n-1 0 < 4 < nj2. 

The boundary condition Eq. (275), along with Eqs. (276) and (277), express 
the fact that we assume the temperature along the arc DE', in continuity 
with ED for the first approximation and for subsequent approximations T,,,, 
is matched to T2,n-l where T2,n i s  given by 

with initial condition 
TZsn = 0, 0 = 0 (279) 

and the boundary conditions 

8T2,,/6'Y = 0, Y = 0, 0 < X < 1, 0 > 0, (280) 

a~,,~lar = 0, Y = c, o < x < 1, e > 0, (28 1) 

T 2 , n = 0 ,  X = l ,  O <  Y < C ,  8 > 0 ,  (282) 

Tz,,, = Ti,,, I+=np = f , ( y ,  Q), X = 0, 0 < Y < C, 8 > 0. (283) 

The solution 
(272)-(275) can be written as 

of Eq. (271) with initial and boundary conditions Eqs. 

and the solution of Eq. (278), subject to conditions (279)-(283), is 
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where J,  denotes the Bessel functions of order m, Si are the roots of the 
equation 

and 

Further, 

&(sic) = 0, (286) 

(287) ppq = n 2 ( p 2  + q2/C2) .  

x exp [-Si2(0 - A)] d i ,  (291) 
where 

I(nz, p.  q )  = sin (pn  C cos 4 )  cos (n sin 4)  cos (m4) d 4 .  (292) 

Starting from some assumed value of t,bn(4, 0) in Eq. (288) we can obtain the 
successive values of a," and y: from Eqs. (289)-(291). In this way we can 
obtain and T2," to any order of approximation. It is found however, in 
practice that the process is very rapidly convergent and even the second 
approximation is quite good for engineering purposes. To illustrate the 
convergence of the process, the values of the coefficients a; and y," calculated 
up to the fourth order of approximation are tabulated in Table IV for two 
values of the nondimensional time, namely, 8 = 0.005 and 0 = 0.1, and for 
c/a = 0.25. It is apparent from Table IV that to find the solution with a 
given degree of accuracy one has to go to higher approximations for larger 
values of 8. The fourth order solutions obtained from the above analysis 
along the lines EB and OD (Fig. 2) are depicted in Figs. 3 and 4, respectively, 
for various values of 8. 

r2 



TABLE IV 

V A L m  OF AND UP TO a AND Y :  UP TO THEIR FOURTH APPROXIMATION FOR 0 = 0.0005 AND 8 = 0.1 

a" rn 

n m = O  m = l  m = 2  m = 3  q = O  q = l  q = 2  q = 3  

1 3.1416 0 0 0 - 0.0864 0.0866 - 0.0233 0.0098 

0.0092 2 1.7726 - 0.8026 0.2130 0.0712 - 0.0856 0.0847 

3 1.7715 - 0.8201 0.2125 0.0708 - 0.0850 0.08 14 - 0.0209 0.0092 

- 0.0212 
e = 0.005 

4 1.7710 - 0.8200 0.2124 0.0708 - 0.0846 0.0813 - 0.0209 0.0092 

1 3.1416 0 0 0 0.0448 0.3168 - 0.0792 0.0352 

2 2.0316 0.0192 2.0720 -0.6859 0.0405 0.2988 - 0.0747 0.0321 

3 1.9761 0.0181 1.9802 - 0.6825 0.0397 0.2902 - 0.0715 0.0308 
8 = 0.1 

4 1.9687 0.0178 1.9800 - 0.6811 0.0389 0.2815 - 0.0702 0.0301 
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FIG. 3. Fourth-order approximated nondimensional temperature along OD (see 
Fig. 2) for various nondimensional values of time. (Kumar and Achari [247].) 

0.75 - 
9 - 
c 
v 

25 

FIG. 4. Fourth-order approximated nondimensional temperature along EB (see Fig. 2) 
for various nondimensional values of time. (Kumar and Achari [247].) 
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VIII. Application of Matrices 

The methods of matrix algebra are especially suitable for handling the 
problem of temperature distributions in composite media consisting of 
several layers of materials with different thermal characteristics. The 
governing differential equations and the matching conditions at each of the 
interfaces, namely, the continuity of temperature and flux can be elegantly 
handled in the form of a matrix differential equation. Matrix methods also 
offer the possibility of the application of discrete models for difficult 
engineering problems where it is impossible to get exact solutions, and as 
such have proved useful in the analysis of heat transfer in irregular domains. 
Yet another field where matrix methods are directly applicable is the analysis 
of coupled irreversible phenomena like the simultaneous flow of heat, 
multicomponent mass, and electricity in  the presence of a magnetic field in a 
continuous system where one has to deal with a system of coupled partial 
differential equations. 

A. AN APPLICATION TO SIMULTANEOUS DIFFUSION OF Two ENTITIES 

Consider the mutually dependent transfer of two entities, for example, 
that of heat and mass i n  a three-dimensional semi-infinite space. Let the 
diffusion of the two entities U,, J = 1 ,  2, be governed by the following 
system of parabolic equations 

-a < z < 00, 

where U, satisfy the following initial and boundary conditions 

uJ(x, Y ,  z ,  r ) l r = O  = f J ( x ,  1'9 z),  (294) 

( a u J / a x > l x = O  = +JJ(y, z ,  (295) 

(296) 

Following Tsoi [248] we write the above system in the matrix form 

aular = A 02 u + BU, 

with initial and boundary conditions 
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where 

and 

With the help of the substitution 

U x ,  Y ,  z ,  7) = exp (B7)W,  y ,  z ,  71, (299) 

Eqs. (296)-(298) can be written in the form 

avp7 = AVV, (300) 

(30 1) 

(302) 

V X ,  Y ,  z ,  L o  = f(x, Y ,  z ) ,  

(3  V / ~ X ) I , = ~  = +(y, z ,  t) exp (- B7). 

The solution of differential equation (300), subject to conditions (301) and 
(302), is well known and can be written in view of Eq. (299) as 

1 " 1  
U X ,  y ,  z,  7) = - 

[2Jn7I3 l o v ' l y m j -  m 

eXP[ - 4 A t  1 (x - .I2 + ( y  - B)' + (z - y)z 

1 x2 + ( y  - B)' + (z  - y ) 2  

4 4 7  - A) exp [ - 
exp [B(7 - A)l+(P, Y, 7) [/B 4 d7. (303) 

To completely determine the solution of our boundary value problem Eqs. 
(296)-(298), it is necessary to determine the elements of the single column 
matrices on the right-hand side of Eq. (303). Using the well known properties 
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of matrices [249], it is easy to show that any arbitrary function F(A)  of 
matrix A can be represented as 

1 

v1 - v2 
F(A)  = - 

where v I  and v2 are the real roots of the characteristic determinant 

(305) 

Similarly, F(B) can be represented as 

1 
PI - P 2  

F ( B )  = ~ [p - P 1 q  F ( P 2 )  - IIB - Pz Ell F(PI)l, (306) 

where p1 and p2 are the roots of IB - pEl = 0. Taking F(B) = exp [B(T - A)]  
and calculating the product F(B)4(P,  y, A) we may write 

where 
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where 

’I2] (311) 
1 x2 + ( y  - p)’ + ( 2  - 

4A(? - A) F(A) = - exp [ - JA 
and 

411* = (all - v2>41* + a1242*, 

421* = ( a 2 2  - v2)42* + a2,41*, 

412* = - [(all - v1)41* + a1242*1, 

422* = - b2141* + (a22 - v1)42*1. 

(312) 

Thus we have determined the elements in the integral matrices in the second 
term on the right-hand side of Eq. (303). The elements of the matrices in the 
first term can be similarly determined and we finally get 

x [ 1 + exp (E)] du dp  dy 

B. FURTHER APPLICATIONS 

Vodicka [250] and Vanko [251] have applied the matrix method to steady- 
state temperature distributions i n  composite slabs. Negi and Singh [252], 
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while studying a problem in connection with the geophysical phenomenon of 
gradual settling down of sediments on the ocean floor and the migration of 
interstitial water upwards due to compaction by gravitational effects, have 
discussed the problem of the temperature distribution in a stratified infinite 
slab with convective heat removal. Jarmai [253] and Lorass-Nagy [254] have 
presented methods based on matrices for the calculation of temperature 
distributions in arbitrary irregular two-dimensional regions. Gamayunov 
[255] has used Green's matrices for the solution of a set of parabolic partial 
differential equations of second order in anisotropic, orthotropic, and iso- 
tropic multidimensional space for boundary conditions of various kinds. 
Hsia and Love [256] have applied matrix methods to the analysis of 
radiative heat transfer between parallel plates separated by a nonisothermal 
medium with anisotropic scattering. 

IX. Eigenfunction Expansions 

A. EIGENVALUES OF THE HEAT CONDUCTION EQUATION 

Consider the heat conduction equation 

in a volume G with surface r satisfying the homogeneous boundary condition 

a t  
a n  - + h h t = O  

on the surface r of the body, and the initial condition 

In Eq. (314) L is a linear second-order operator. Writing 

t = 4x9 Y, Z M . 5 )  

L(u)/u = g'/g = -Af. 
in Eq. (314) we get 

The solution of Eq. (314) thus reduces to the eigenvalue problem for 11. 

L(u) + A'u = 0 in G 
and 

(3 19) 

a v  
- + hv = 0 on r. a n  
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The solution of the differential equation (314) has the form 

t = UL‘ exp ( -%’T) (321) 

for a given eigenvalue 2 and its eigenfunction u.  Using the eigenfunction 
expansion theorem [174, p. 3121 the function 4(.1-, y, z )  in  Eq. (316), which 
is continuous in G, together with its derivatives of first and second order can 
be expanded in terms of the eigenfunctions r,, and the eigenvalues in. The 
solution of Eq. (314) is given as 

m 

r(x, y ,  z ,  T) = C C,,U,,(.Y, I’, => exp ( - 2 ; ~ ) ~  (322) 
n =  1 

where 

c, = j{jG 4un cl,Y dy d z  

and the eigenfunctions u l ,  u 2 ,  ... and the associated eigenvalues form a 
complete set. The above fundamental result has been used extensively in the 
literature for obtaining solutions to very general and complicated problems 
of heat conduction. 

In a series of papers Olcer [257-2611 has exploited the method of eigen- 
function expansion to tackle general problems of heat conduction in a plane 
as well as in cylindrical and spherical geometries, with generalized boundary 
and initial conditions in the presence of space- and time-dependent heat 
sources. Charpakov [262] has described a method of eigenfunctions based 
on what the author calls the “Regular Regime” theory. In heat conduction 
this terminology means the possibility of writing the solution of the heat 
conduction equation in terms of products of eigenfunctions and exponentials 
containing the corresponding eigenvalues. I n  another paper [263] Charpakov 
has applied the method to unsteady heat and mass transfer and has given 
estimates of the time for the system to achieve regularization with a given 
percentage of error with respect to the first eigenvalue. 

B. APPLICATION TO PERTURBATION SOLUTIONS OF MOMENTUM AND ENERGY 
EQUATIONS 

In order to study the velocity fields which may be described by the per- 
turbation of the Blasius solution, Fox and Libby [264] have introduced an 
approximate method based on linearization about the Blasius solution. 
A corresponding study of the energy equation for flows with velocity des- 
cribed by the Blasius solution, but with nonunity Prandtl number and a 
variable product p p ,  has been discussed in  Fox and Libby [265]. Libby [266] 
has given a more accurate procedure for determining the eigenvalues in the 
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above problems. Kotorynski [267] has provided an analytical approximation, 
uniformly valid over the infinite range of the similarity variable, to evaluate 
the complete set of orthogonal functions satisfying an irregular Sturm- 
Liouville system arising in the investigations of Fox and Libby [264-2651. 

The energy and momentum equations of the laminar boundary layer in a 
uniform external stream, of Prandtl number CJ, are considered in the form 

(324) 

(325) 

(CL,Jq - .fl;v - 2 H f , f q ,  - &fJ = 0 9 

(Cg,), + CJ~!!, + ~ I ~ ( C J  - 1)(UKqq),, - 205(fqLqy - &s,) = 0 ,  

where q and t are defined in Eqs. (29) and (30) and the subscripts denote 
differentiation. If.fo(q) is the solution of Blasius. i t  is given by the differential 
equation 

with boundary conditions 
fo "' + .fofo" = 0 ,  

fO(O) = fO'(O) = 0 fo'(co) = 1 . (327) 

f(t,  V )  = f o ( ~ )  + Cfi(t9 1117 g ( t ,  q )  = g o ( t ,  V )  + gi(t, v>, (328) 

The solutions of Eqs. (324) and (325) are attempted in the form 

i i 

where C and r~ have been taken to be unity. The linearization procedure 
consists of substituting f(t, q )  and g(t, q )  from Eq. (328) into Eqs. (324) 
and (325) and neglecting the products of g i  and fi and their derivatives. 
The equations for determining f i  and g i  (after dropping the subscripts) are 
then given by 

f q q q  + f o f v g  + .h'Y - 2t;(foYcq - fb'Yc) = J ' i ( t ; , ~ ) ,  

gqq + foRtI - 2tfo'g.C = Gi(t9 i l l, 

(329) 

(330) 

where the right-hand sides of these equations are known i n  terms of earlier 
known functionsfi and g i .  Aswming that the solutions of the homogeneous 
equations associated with Eqs. (329) and (330) are given by 

N ,  are solutions of the Sturm-Liouville system 

with conditions 

and H,, are the solutions of 

N" + f b N "  + &'Nr + (1 - A)fo"N = 0 (332) 

N(0) = 0,  "(0) = 0,  "(a) = 0 ,  (333) 

H" + f b  H' + /ifo' H = 0 

H(w)  = 0 ,  
with conditions 

H(0)  = 0, 

(334) 

(335) 
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where the functions N,, and H,, have been shown to form complete ortho- 
gonal sets [267] with respect to functions having exponential decay at  
infinity and the eigenvalues A,, and p,, are real and positive. To obtain an 
analytic estimate of these values, Kotorynski [267] has shown that Eq. (332) 
can be transformed to the form 

where 

and 

3fofb: 7 c2 If,' 
q = 4fb2 + - - + -- 16fb3 4 f b '  (337) 

From the known solutions of the Blasius equation for q + 0 and q + 00 it 
can be deduced that q - !'I4 for t + 00 and q - (7/36t2) as t + 0. Thus, 
instead of Eq. (336), the equation 

+ ~ - - - ~ W w , = O  d2W, nt [ 1 2  4 36t 7 1  (339) 

has been analyzed, where q(t)  has been replaced by an expression which 
uniformly approximates q(t) in the range zero to infinity. The solution of 
the above equation can be obtained in terms of Laguerre polynomials. 
Thus 

for 
W l , , ,  = exp ( - ; t t 2 ) t 2 ( a +  1 1 4 ) ~ ( * a )  n ( t  2 1 (340) 

(34 1) I,, = 2(n + I )  + ; !I = 0,  1,2, ... . 

a is chosen such that wl.,, has the correct asymptotic behavior for q co 
and also for q --* 0. Now ct = 3 provides the proper choice. Thus the solution 
given in Eq. (340) provides the analytic approximations to the eigenvalues 
of Eq.  (336). 

The eigenvalues of the problem presented by the energy equation can 
similarly be reduced to the form 

d'".+[ii-q+j$ dt' 12 5 1  w 2 = o ,  (342) 

and its solution is given in  the form 

(343) 

p n = 2 ( n +  1 ) - &  n = o , 1 , 2  ) . . . ,  (344) 

W 2 , n  = exp ( - t 2  /4)pO'+ 1 / 4 )  (2)') 2 Ln ( t  1 
for the eigenvalue 
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and for the correct asymptotic behavior of w,,,, y = 4. A comparison of 
the approximate eigenvalues A,, of the momentum equation obtained above 
and the computed values has been made in [267] and good agreement 
between the two sets of values has been found. 

C .  FURTHER APPLICATIONS 

As in the case of heat conduction, the problem of forced convection heat 
transfer under homogeneous boundary conditions can also be reduced to 
an eigenvalue problem. Thus Dennis et al. [268] have used the method of 
eigenfunction expansion for the forced steadystate heat convection in 
laminar flow through rectangular ducts with a Newton type convection 
boundary condition at the surface. Schenk and Han [269] have obtained 
the solution of laminar heat flow in ducts with elliptic cross section in the 
form of a double series of eigenfunctions. The method has also been exten- 
sively used in the problems of liquid-metal forced convection heat transfer. 
This subject has recently been revived by Stein [270] who has unified the 
various investigations on the subject through the mathematical technique of 
eigenfunction expansions. 

Case [271] has given a method involving the construction of a complete 
set of eigenfunctions of the homogeneous transport equation in which any 
other solution can be expanded. Sources and boundary conditions are used 
to determine the coefficients. Based on Case’s method [271], Simmons and 
Fersiger [272] constructed a complete set of eigenfunctions of the homo- 
geneous radiative transfer equation for nongrey radiative heat transfer 
between parallel plates. 

X. Miscellaneous Methods 

A. ROSENWEIG’S MATCHING TECHNIQUE 

In the solution of many problems of heat transfer one is faced with the 
problem of obtaining an approximate solution valid for all times, knowing 
the asymptotic solutions for small and large values of time. Rosenweig [273] 
has described one such technique. The technique essentially consists in 
assuming the form for the Laplace transform of the solution valid for all 
values of time with a certain number of unknown constants. The above 
form is guessed from the known asymptotic solutions of the problem for 
large and small values of time, and the number of unknown constants in it 
is governed by the total number of terms known in the asymptotic solutions. 
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The unknown constants are determined by matching an appropriate number 
of terms in the expansion of the assumed expression with the Laplace trans- 
form of the corresponding known terms in the asymptotic solutions. The 
technique has been used by Cess [274] in obtaining the transient tempera- 
ture distribution in the semi-infinite mass of a moving incompressible fluid 
and the heat flux at its surface of contact with the solid at y = 0. We pro- 
pose to follow this work in the following to explain Rosenweig's technique. 

The energy equation for the fluid in terms of the nondimensional tem- 
perature T = ( t  - t m ) / ( f w  - t,) is given by 

aT dT dT a2T 
- + u -  + U- = k 7 ,  at ax ay ay (345) 

with the initial condition 
T = O ,  7 = 0 ,  (346) 

and the boundary conditions 

T = O ,  x = O ,  y > O ,  7 > 0 ,  (347) 

T =  1 ,  y = O ,  x > O ,  z > 0 ,  (348) 

T = O ,  Y - + C O ,  x > O ,  7 > 0 ,  (349) 

where u and u are the velocity components in Eq. (345) and are given as 

u = U,f', (350) 

U = f ( v u , / X ) 1 ~ 2 ( r t f '  - f l y  (351) 

where f ( q )  is the dimensionless Blasius stream function and q = yJ17,/vx. 

In terms of the new variables 7 = U,T/x and jj = y/Jvz, the energy equation 
(345) can be put in the form 

- 

where 
f(q) = @/2)(jj t '")~ - * ( p 2 / 5 ! ) ( j j Z ' 1 2 ) 5  + *.. (353) 

and p = 0.3321. A series solution of Eq. (352) is given in terms of powers 
of T in the form 
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from which we can write 

-(ar/aq),=, = ( ~ / ~ ) ~ / ~ f ~ / ~  - (flp6)f + ... (355) 

since q = jj,/F and dT/aq = t-1/2(dT/aJ). For large values of time we use 
the independent variables f and q and the equation (345) is transformed to 

Defining a new dependent variable 

+(s, q)  = s [I T(?, q) exp ( - S T )  di (357) 

where ~ ( s ) / s  represents the Laplace transform of T, it can be shown that 
Eq. (356) can be rewritten in terms of 4 as 

which has the solution of the form 

(a4/aq)v=o = -4,yo) - ~ , ' ( o ) s  - 42'(o)~2 + ... , (359) 

where the functions +,'(O), 4]'(0), and &'(O) have been tabulated in Cess 
[274]. Also, the solution for small i in Eq. (355) is transformed in terms 
of 4 as 

- (a4jaq),,=, = a1/2sl/2 - (fl/16)~-' + * * .  . (360) 

Equations (359) and (360) represent the flux at q = 0 for large and small 
7, respectively. To obtain an expression for (a4/dq>,=, uniformly valid for 
all ? it is assumed, following Rosenweig [273], that 

for all i. The above expression may be written 

for small s, and for large s it can be represented as 

-(a4,vll),=, = alS1/2 + al(a2 - 4a3)s-1/2 + a4s-1. (363) 

The five unknown constants on the right-hand side of Eq. (361) are so 
evaluated that the first two terms in Eq. (362) agree with Eq. (359) and the 
first three terms in Eq. (363) agree with Eq. (360). Thus we get 
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It can be seen from Fig. 5, depicting both the asymptotic solutions in the 
Laplace transform coordinate and the corresponding uniformly valid 
solution obtained by the above technique, that the approximate solution 

t 
0.1 

0.04 

u =10 3 u =4.0 

0.1 1 10 
Laplace transform variable, s 

FIG. 5. Comparison of the limiting solutions of the Laplace transformed variable, 
for the temperature derivative at the surface, with the corresponding uniformly valid 
solution obtained by Rosenweig’s matching technique. (Reproduced from Cess [274].) 
-__ Approximate solution; - - - - limiting solution. 

correctly joins the limiting solutions and therefore provides a very useful 
approximation of the solution for those values of time for which it cannot 
be otherwise easily determined. The approximate solution for the heat flux 
at the surface valid for all values of time is 

-(aT/dq>,=, = 0.5642&/? exp (-a3T) - 0.02076 exp (-as?) 
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It is noted that Cess and Sparrow [I041 have used the same technique for 
obtaining the temperature-time history of a rotating disk subject to a step 
change in temperature. 

B. DORFMAN’S METHOD FOR NONSIMILAR BOUNDARY LAYERS 

An approximate analytical method for obtaining solutions to nonsimilar 
velocity and thermal boundary layers has been described by Dorfman [275, 
2761. Dorfman’s method consists of linearizing the momentum equation 
with the assumption of a one-parameter profile for the velocity distribution 
in the boundary layer, the unknown parameter i n  the profile being deter- 
mined by the method of moments or the method of least squares. Let us 
consider the momentum and energy equations in the Von-Mises form [275]: 

where 
Y 

4 -1’. d x ,  $ =I u d y ,  Z = U 2  - u z ,  T = t - 1, 
0 0 

(366a) 
with the boundary conditions 

4 = 0, z = Z0(*), T = To(*) (367) 

4 > 0 ,  * = o ,  24 = U2(4), T = Tw(4),  (368) 

* = 00, u = T = O .  (369) 

To simplify the system, let us assume that the velocity profile is given as 

u/u = a(*, 8). (370) 

where p is an unknown parameter. If we substitute the approximate form 
of the velocity distribution from Eq. (370) in Eqs. (365) and (366), the 
system stands simplified as the first of these equations now becomes linear. 
Thus we get 
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The solutions of Eqs. (371) and (372) with boundary conditions (367)-(369) 
could be obtained in terms of a special function, and these solutions will 
be in terms of an unknown parameter which p can be determined from the 
condition 

or 

Dorfman has further remarked [277] that @(I), p) contains I) in powers of 
$1/2. Also in contrast to the Polhausen profile the limits of the integral in 
Eqs. (373) and (374) vary from 0 to 00. Therefore he suggests that tl can 
assume, with some advantage, the form 

o! = 1 - exp (-/h,bl’z), (375) 

or for still greater accuracy 
n 

tl = CC,qk; q = 1 - exp(-$’/’). (376) 

Dorfman [275, 2761 has applied the above method to various problems in 
nonsimilar boundary layers. His solutions show remarkable coincidence 
with earlier known numerical and exact results. 

C. SURKOV’S METHOD FOR PROBLEMS INVOLVING CHANGE OF PHASE 

It is well known that problems involving changes of phase are nonlinear 
by nature [lo, p. 2841 and require special methods for their solution. The 
essential difficulty in such problems arises because of the motion of the 
melting front whose position is also to be determined along with the tem- 
perature distributions in the melted and unmelted parts of the original 
solid. Surkov [277] and Krylovich and Surkov [278] have presented a 
general method based on the finite Fourier transform or Hankel transform 
(depending upon the geometry of the region under consideration) and the 
breaking up of the time interval into various subintervals for obtaining 
approximate solutions to the above type of problems. We propose to illus- 
trate the method by considering the melting of an infinite hollow cylindrical 
tube R, < r < R2 with prescribed time-dependent temperature at the outer 
surface and with prescribed time-dependent flux at  the inner surface. The 
problem of the temperature distribution in the tube in the initial heating 
period before the onset of melting can be described as 
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7 > 0, R ,  < r < R,,  (377) 

t(r, 7) = 0 7 = 0, (378) 

7>/ar ]  r = R I  = - ~ I ( T ) / K ?  (379) 

t ( r ,  7, r = R 2  = d(7). (380) 

The solution of the problem stated by Eqs. (377)-(380) can easily be 
obtained by application of the finite Hankel transform [279, p. 821. Thus 

= f (r ,  71, (381) 

(382) 

(383) 

where pn are the roots of the transcendental equation 

and 

From Eq. (381) we can determine the time T~ when the melting starts at 
the inner surface. This would happen when the temperature at  the inner 

wo(krPn) = J’1(Pn)J0(krPn) - Jl(Pn)Yo(k’pn) = 0 k’ = R ~ / R I ,  

wo lR 1 11 = (d/dr) { wo [Pn(r/’R 1) I 1 r = R 2’ 

boundary rises to the melting temperature t,. Thus T~ is to be determined 
from the relation 

(384) f ( r , T O ) r =  R ,  = t,. 

From this moment onward the inner boundary at r = R ,  starts receding 
and the boundary conditions at the moving front become 

at Q(7) d S  
K z = - - + p Z -  2nr dr (385) 

t = t,, (386) 

where S(z) is to be determined from the solution. Let T, be the time required 
to completely melt the tube. Thus S(7) is to be determined for the time 
interval T~ < z < T~ + T,,,. It has been suggested by Surkov [277] and 
Surkov and Krylovich [278] that the time interval 7, be divided into IZ equal 
parts at points zl, z2,  ... , 7,,, such that T,, = T,,, and  AT^ = T ~ + ~ - T ~ .  Thus the 
position of the melting front at time T~ is assumed to be at the point Oi along 
the r direction. It is assumed that Oi moves in jumps at the end of the intervals 
and remains stationary during r i  < 7 < T ~ + ~ .  Thus Surkov’s scheme pro- 
vides an approximation consisting of a discontinuous curve in the graph 
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for S(T)  against the time T. The heat flow problem for r i  in the interval of 
time is governed by Eq. (377), the initial condition t i  = f i ( r ,  z i )  with 
the boundary condition Eq. (380) satisfied at r = R2 and the boundary 
condition Eq. (384) being satisfied at r = r i .  The solution of the above 
boundary value problem for t i  is given as 

rfi(r, zi)V0 - dr r 2 ri ,  Ip ( :i) I (387) 

where dni are the roots of the equation 

V0(kiani) = Yo(6,,)J0 a,,, - - J (6 ,)Yo dni  - = 0 ki = R2/r i .  (388) 

Noting that j i ( r ,  r i )  = t i - l ( r ,  z i )  we can use Eq. (387) to express t i - l  in 
terms of t i - 2  which itself can be expressed in terms of t i - 3 ,  and so on. 
Using Eq. (385) we can determine the unknown values r i  = S(.ri) and thus 
the position of the moving front at any time. For T~ < T < 7 i + l  we can 
write Eq. (385) in the form 

( :) O I t '  ( :) 

d s  Q(T)  K at, 

d~ 2nSipl p l a r  

The right-hand side of Eq. (389) is a known function of T which could be 
written in the form 

- + - - .  (389) 

P -  1 

i = O  
S(7i) - s(~0)  = C [S(7i+1> - S(ri>], 

(390) 

i = O  

for i = 0, 1 ,  2, ... , p  < n, and knowing S(ri)  we obtain t i ( r ,  ri) from Eq. 
(387). 

A similar technique has been used by Jaworski [279] to obtain the solution 
to the heat conduction problem with an arbitrary time-dependent flux 
boundary condition. The methods developed in [277, 278, 2791 provide an 
analytic alternative to the elaborate difference schemes used until now for 
the solution of such problems. 
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D. DUHAMEL’S PRINCIPLE 

A method intimately connected with the Laplace transform, namely, 
Duhamel’s Principle [lo, p. 301, has proved to be most useful in breaking 
up the very general and complicated boundary value problems with time- 
dependent boundary conditions and space- and time-dependent sources 
into simpler steady-state and unsteady heat conduction problems with 
time-independent boundary conditions [280]. The above method has been 
applied [281-2831 to the solution of heat flow problems in cylindrical regions 
with sinusoidal and other types of time-dependent boundary conditions. 

Very recently, Matsumoto [284] has formulated Duhamel’s principle for 
the stationary internal radiation field in a nonhomogeneous atmosphere of 
finite or semi-infinite optical thickness. Through this principle, the non- 
classical radiation field due to arbitrary incident radiation is expressed as 
an integral of the radiation field due to incident radiation in a specified 
direction. Duhamel’s principle in the nonstationary radiation field has been 
developed in [285]. 

XI. Conclusion 

In the foregoing we have reviewed some of the most important analytical 
methods used in the recent heat transfer literature. It emerges that the most 
powerful methods are the perturbation methods. Regular perturbation 
methods can be used in almost all branches of heat transfer involving non- 
linear equations. Boundary layer heat transfer problems and problems 
involving the interaction of radiation with other modes of heat transfer 
usually lead to problems of singular perturbations. It is hoped that further 
work in the basic theory of singular perturbations will establish the regions 
of validity for various methods of obtaining uniformly valid solutions, and 
will probably lead to a unified theory for these methods. The recently 
developed Lighthill-Volterra approach has been used in many problems 
of fluid flow and, with further work on the techniques of obtaining analy- 
tical solutions to the singular integral equations of the volterra type, this 
method may find many further applications. Although variational methods 
have until now been mostly used in heat conduction and diffusive mass 
transfer, they have a great potential for application, especially in their 
extended form, to problems involving fluid flow with variable properties 
and chemical reactions, as well as to problems involving many simultaneously 
coupled irreversible processes. 
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In the opinion of the author there is now a definite trend to use more and 
more analytical methods, which were hitherto used exclusively in other 
branches of applied mathematics, i n  various types of problems of heat 
transfer. The recent use of analytical function theory, the method of charac- 
teristics, and the WKBJ method applied to problems in heat transfer 
illustrated in the present review indicate a trend in this direction. 

NOMENCLATURE 

Perturbation Methods-Section I1 

X , Y ,  z 
X 

P 

small parameter 
solution of some singular 

perturbation problem 
with an independent var- 
iable and E as a small 
parameter 

Cartesian coordinates 
new independent variable 

Eq. (2) 
nth-order perturbation sol- 

ution 
nondimensional distance 

describing the position 
of the melting front 

nondimensional tempera- 
ture in the melted region 

nondimensional tempera- 
ture in the solid region 

nondimensional parameter 
inversely proportional to 
the latent heat of the 
solid 

nondimensional time 
nondimensional parameter 

with natural restriction 
O < a l < l  

ratio of diffusivities of the 
melted and solid regions 

stretched independent vari- 
able representing non- 
dimensional time 

a number between zero and 
one 

outer solution 
stretched inner variable 
inner solution 
a number between y and one 
composite solution 

7 

5 

P 
C 

U 

f 

rB 

i 

R 

- 
I' 

G 

D 
r 

nondimensional coordinate 
normal to the body Eq. 
(29) 

nondimensional coordinate 
along the body Eq. (30) 

density 
= pulp,u. Chapman-Rubes 

velocity along the direction 

nondimensional stream 
function = &A?' - Bq5 

radius of the axisymmetric 
body 

index of cB j = 0 for two- 
dimensional flow and 
j = 1 for axisymmetric 
flow 

in constant Eq. (30) 

E 

temperature 
atom concentration 
total enthalpy Eq. (35) 
specific heat at  constant 

pressure 
represents the streamwise 

variation of the reaction 
effect along the body. 
R = 0 for symmetrical 
bodies 

Damkohler number 
= 2ER"KR(u, d[/rlx)-' 

describing the gross mag- 
nitude of chemical reac- 
tion 

energy of dissociation per 
unit atom mass 

= &'f", 7) - H,,(o)l 
= r(i -t- D) 

{CP( t ,  - t w ) }  
/ 1 d a e  - aEQ,w)/ 
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Q = 17) - aEQ(?) 

Q 
a x )  * stream function 

SUPERSCRIPTS 
0 outer solution 
i inner solution 

- - r1/2,, 

order of magnitude of x 

C 

SUBSCRIPTS 
n 

e 

composite solution 
differentiation with respect 

to 17 

number in the subscript 
refers to the order of 
perturbation 

values at the outer edge of 
the boundary layer 

W value at the wall 
EQ equilibrium value 

Asyniptotic Methods-Section III 
h nondimensional tempera- 

ture function Eq. (64) 
a Prandtl number 

binomial coefficient 

7 inverted variable Eq. (80) 
h large parameter in Eq. (91) 
U X )  gamma function with argu- 

ment x 
T nondimensional tempera- 

ture 
0 transformed temperature 

function Eq. (99) 

Variational Methods-Section IV 
6F variation of F 
V thermal potential Eqs. (105) 

and (116) 
D volument dissipation func- 

tions Eqs. (106) and ( 1  17) 
H heat flux vector 
7 time 
C volume specific heat capa- 

city = pc, 
C" heat capacity at constant 

volume 

Q I  

U 

DS 

V 
h 

K 
U I J  

vYp 

e 

WJ 
* Y J  

Q I  

k 
0 

time dependent generalized 
coordinates 

thermal force Eqs. (109) 
and (118) 

velocity vector 
surface dissipation function 

Eq. (119) 
gradient operator 
integrated heat capacity 

surface heat transfer coeffi- 

thermal conductivity 
velocity of component y in 

the J direction Eq. (121) 
stoichiomet ric coefficient 

for component y for pth 
reaction 

molecular mass of the com- 
ponent y 

rate of pth reaction 
external force on com- 

component of pressure ten- 

energy per unit mass 
heat flow in J direction 
diffusion flow of y com- 

ponent in J direction 

Eq. (120) 

cient 

ponent y 

sor 

= - y y P M y P y  

chemical potential 
thermodynamic forces 
thermodynamic fluxes 
unsteady local potential 
local potential for station- 

ary state 
parameters in the assumed 

solution, i = I ,  2 , .  . . , rn 
thermal diffusivity 
nondimensional mass trans- 

fer potential 
nondimensional time 
n = 1, 2, 3, 4 functions 

describing the effect of 
temperature and mass 
transfer potential on 
various thermophysical 
characteristics in a por- 
ous body 
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XI i = 1 ,2 ,3 ;  nondimensional 
Cartesian coordinates 

Luo initial value of the Luikov 
number 

Pno initial value of Posnov 
number 

KO' modified Kossovich num- 
ber 

VI volume of the porous body 
a(.) position of the melting 

front at  time T 

d') penetration depth for tem- 
perature 

tm melting temperature 
m = I / &  421, nondimen- 

sional number Eq. (143) 
I latent heat of melting 
R heat flux at  x = a(') 
'In nondimensional melting 

time Eq. (144) 
q1 = q / l / k  T, nondimensional penetra- 

tion depth 

- 

SUPERSCRIPTS 
derivative with respect to 

time 

ables not subject to 
variation 

* assumed macroscopic vari- 

SUBSCRIPTS 
n normal to the surface 
i components in the j direc- 

Y pertaining to component y, 

P pertaining to reaction p ,  

tion 

y =  1 ,2 ,  ..., n 

p = l , 2 ,  . . . ,  r 

Methods Related to the Solution of Integral 
Equations-Serfion V 
7w(x) = p(au/av),,,,skin friction 

P coefficient of viscosity 
Q&) 
a(x),  k(x),  g (x )  known functions of x in 

the integral equation 
(151) 

at the wall 

heat flux at  the wall 

unknown function in the 
integral equation (151) 

powers of x in the expan- 
sion of a(x) Eq. (152) 

parameter in the Mellin 
transform 

analytic function in R e S  
> o  

real part of S 
= M(f) = /'(x)xs-' dx, 

Mellin transform of f ( x )  

j:f(x)xS-l  dx  

.f(x)x'-' dx 

0 

1 

powers of x ,  Z i n  Eqs. (158) 
(177), and (181) 

coefficients in the series 
solution Eq. (158) 

coefficients in the series 
solution Eq. (177) 

coefficients in the series 
solution Eq. (181) 

nondimensional tempera- 
ture along the plate Eq. 

independent variable de- 
scribing the distance 
along the plate 

temperature along the plate 
recovery temperature 

(170) 

SUBSCRIPTS 
f relating to fluid 
co relating to free stream 

Methods Based on the Use of the Complex 
Variable--Section VI 
D cross section of the channel 
r contour of the channel 
P pressure 
z coordinate along the axis 

Q strength of the heat source 
c1 = (l/p) dpldz = constant 

Z complex variable 

of the channel 

C Z  = ( p c p / K )  dt/dZ 
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P 

f ( x ,  Y )  

SUPERSCRIPT 
- 

conjugate complex variable 
components of T explained 

after Eq. (191) 
temperature function re- 

lated to Ti Eq. (190), and 
solution of Eq. (186) 
with boundary condi- 
tions Eq. (188) 

temperature function re- 
lated to Tz and solution 
of Eq. ( I  87) with bound- 
ary condition Eq. (189) 

n = 1, 2, . . . , exterior 
angles of a polygon in 
z-plane 

iv 
complex variable w u i 

real axis in the w-plane 
imaginary axis in the w- 

plane 
the width of the doubly in- 

finite strip in the z-plane 
half width of the cut in the 

strip in z-plane 
height of the cut in the 

strip in z-plane 
elliptic functions defined in 

Jacobi's zeta function Eqs. 
(209) and (210) 

elliptic integral of the third 
kind 

complete elliptic integrals 
of the first kind defined 
in Eqs. (211) and (212) 

complex variable 
( p  = Q + is) 

the Laplace transform of 
t (x,  y ,  T) with respect to 
T Eq. (225) 

Fourier transform of i(x, y )  
with respect to x 

= z / p + p p z  R e y > O  

inverse Laplace transform 
of the right-hand side of 
Eq. (246) 

Eqs. (205)-(207) 

= s  

denotes conjugate complex 

Special Methods for the Solution of'Partial 
Diflerential Equations-Section VII 

velocity averaged over the 
cross section of the 
channel 

nondimensional x-coordin- 
ate 

nondimensional y-coordin- 
ate 

velocity averaged over time 
and y 

functions in the assumed 
solution Eq. (256) 

radial coordinate in the 
semicircular region in 
Fig. 2 

radius of the end circle 
Fig. 2 

length of the rectangular 
region Fig. 2 

= rja 

= cja 

= -(I/&') logGnEq.(261) 

= 7rZ(pZ + y'jC2); p = 

1 , 2 , .  . . , c 0 , q  = 
l , 2 ,  ...,a 

angular coordinate in the 
circular region Fig. 2 

roots of the transcendental 
equation (286) 

Bessel function of order rn 
and argument x 

function describing thenon- 
dimensional temperature 
along X = 0 Eq. (283) 

assumed temperature along 

coefficients defined in Eqs. 
R = C Eqs. (275)-(277) 

(288)-(291) 

refers to circular part for 

refers to rectangular part 

nth approximation 

x < 0 in Fig. 2 

for x > 0 in Fig. 2 
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Applicrition of Matrices-Section VIII 
UJ diffusing entities satisfying 

the partial differential 
equation (293) and 
boundary and initial 
conditions Eqs. (294)- 
(295), J = 1 ,  2 

A ,  B square matrices of the 
second order 

U,L d column matrices 
"1, " 2  eigenvalues of matrix A 

Eq. (305) 
P I ?  P2 eigenvalues of matrix B 

Eq. (306) 
E unit square matrix 

Eigeri furict ion Expansions-Sect ion I X 

A. I eigenvalues of the heat 
conduction equation 
(314) 

c. eigenfunctions of the heat 
conduction equation 
(314) 

N " ( d  solutions of the Sturni- 
Liouville system Eqs. 
(332)-(333) related to 
momentum equation 
(324) 

HA?) solutions of the Sturni- 
Liouville system Eqs. 
(334)-(335) related to 
energy equation (325) 

P" & eigenvalues of the honio- 
geneous equation asso- 
ciated with Eq. (330) 
and Eq. (329), respect- 
ively 
= dm/dxm {expx d"/dx" 

y [x' exp(x)ll, 
associated Laguerre 
polynomial 

Miscellaneous Methods-Section X 
T 
Y coefficient of dynamic vis- 

= ( 1  - tco)/(tw - tmu) 

cosity 

u T / X  

= .v/\ VT 

= .I,\/ U" / \  vx 
n = 0, I ,  2, coefficients in 

the series solution of 
Eq. (358) 

n = 1, 2, 3, 4, 5 ,  unknown 
constants in the assumed 
uniformly valid solution 
in Laplace transformed 
variable 4 Eq. (361) 

independent variables in 
the momentum and 
energy equations in the 
Von-Mise's form Eqs. 
(365)-(366) defined in 
Eq. (366a) 

assumed velocity profile in 
the nonsimilar boundary 
layer Eq. (370) 

inner radius of the unmelted 
hollow cylindrical tube 

outer radius of the hollow 
cylindrical tube 

time-dependent flux at the 
inner boundary of the 
hollow cylindrical tube 

time-dependent tempera- 
ture at  the outer surface 
of the tube 

Bessel function of order rn 
and argument x and of 
second kind 

roots of the transcendental 
equation (382) 

melting temperature 
time-dependent flux at the 

melting boundary de- 
pending on the inner 
radius of the melting 
tube 

time required for complete 
melting of the tube 

= T i + ]  - 7z 

the position of the inner 
boundary during the time 
interval T i  < T < T,+ I 

roots of the transcendental 
equation (388) 

- 
_ _  
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1 . Introduction 

The present article is devoted to the heat transfer and hydraulic resistance 
of single tubes and banks of tubes of various arrangement in flows of gases 
and viscous liquids . The process of heat transfer from tubes in crossflow 
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has been extensively studied. However, recent developments in the field of 
boiler equipment required more detailed information about the heat 
transfer of single tubes and banks of tubes in  flows of gases than was avail- 
able. Most of the previous experiments were carried out in flows of air, as 
its physical properties scarcely differ from those of smoke gases. 

Earlier investigations were concerned with the heat transfer of a single 
tube [ l ,  21 as well as with the intensity of the heat transfer of a tube in the 
inner rows of a bank [3, 41. These were followed by detailed investigations 
of the influence of the geometrical parameters of banks on heat transfer 
[5-71. The results led to the conclusion that the intensity of the heat transfer 
of a tube in a bank is higher than that of a single tube, and depends on the 
arrangement of tubes in a bank. 

At the same time the development of similarity theory improved the 
methods of generalization of test data. In  the twenties and thirties the calcula- 
tion formulas, including dimensionless groups, became commonly used. 
Similarity theory, as applied to the process of convective heat transfer, not 
only suggested the necessary direction of experiments, but also supplied a 
common basis for the generalization and analysis of the experimental data 
obtained by different authors, and yielded the relations suitable for practical 
calculations. 

According to the results of numerous investigations and the wide generali- 
zations of Antuf’yev and Kozachenko [8], Grimison [9] and other workers 
[lo, 111, Kuznetsov [I21 and other authors suggested even more general 
relations for the calculations of heat transfer and hydraulic resistance of 
banks of tubes in a crossflow of gas, which have been widely applied in the 
design of steam power boilers. 

Further investigations of flow past a single tube and its heat transfer 
[13-161 facilitated the understanding of the physical phenomenon of heat 
transfer in banks of tubes in crossflow, the development of thermoanemo- 
metry, and the solution of other technical problems. Several books appeared, 
in  which extensive information was presented and summarized. Those by 
Antuf’yev and Beletsky [17], Kays and London [18], and Gregorig [I91 are 
the first to be mentioned. 

The works mentioned above dealt only with heat transfer in flows of 
gases and only with in a moderate range of Reynolds numbers. Recent 
accelerated development of science and technology has revealed a number 
of new problems in the field of heat transfer of tubes in crossflow. A need 
for reliable formulas for the calculation of the heat transfer of tubes in  
flows of gases at high Reynolds numbers became apparent. The fast growth 
of chemical and power industries and the emergence of some new branches 
of engineering caused an increased interest in heat transfer in flows of 
viscous fluids at higher Prandtl and Reynolds numbers. 
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The shift to higher temperatures and forced heat fluxes requires more 
precise studies of local heat transfer and flow patterns, as well as the need 
to consider the influence of heat flux direction, temperature, and other 
factors on the intensity of heat transfer. More important became the choice 
of the reference temperature, to which physical properties, included in 
similarity criteria, are related. 

In the last decade, the investigation of heat transfer and hydraulic resis- 
tance of tubes i n  flows of gases and viscous liquids at high Reynolds numbers 
has been extensively carried out at the Institute of Physico-Technical 
Problems of Energetics of the Academy of Sciences of Lithuanian SSR 
and in other research centers. In particular, the heat transfer of tubes in 

crossflow of gases at high Reynolds numbers has been investigated at the 
Institute fur Reaktobauelemente Kernforschungsanlage (Julich, West 
Germany). Interesting methods of investigation have also been developed 
at the Boris KitlriC Institut (Belgrad, Yugoslavia). Results of these and other 
new investigations will be discussed below. Some of the problems are at 
least partially :onsidered in the book by Zukauskas et a/. [20] that has 
recently appeared. 

In the present chapter we shall be concerned with important problems 
of heat transfer and the hydraulic resistance of tubes as mentioned above, 
and in particular with the heat transfer of single tubes, banks of tubes, and 
systems of tubes in  crossflow. In connection with this, separate sections will 
be devoted to the influence of the physical properties of fluids on heat 
transfer. Extensive experimental data will be analyzed and will include 
investigations of banks of tubes of various arrangements and a single tube 
in crossflow in the range of Prandtl number from 0.7 to 500 and that of 
Reynolds number from 1 to 2 x lo6. 

Heat transfer is considerably influenced by the flow regime around the 
tube, while flow past banks of tubes is one of the most complicated problems 
of practical importance. Knowledge of these processes will enable us to 
carry out more extensive studies of heat transfer. Therefore, before discus- 
sing problems of heat transfer, we shall first consider descriptions of flow 
past a single tube and a tube in a bank. 

11. Flow Past a Single Tube 

A. FLOW OF AN IDEAL FLUID 

The theory of an ideal fluid is based on assumptions of a possibility of 
slip between the fluid and the wall and of the absence of internal friction. 
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The velocity distribution in a flow of an ideal fluid past a tube is expressed 
by 

u, = uo sin 411 + ( R , / R ) 2 ] ,  (1) 

where R ,  and R are distances from the tube axis to its surface and to the 
point considered, respectively, and uo is the velocity of the main flow. It is 
obvious from Eq. (1) that the tangential velocity u, decreases as the distance 
from the surface increases, e.g., at  R = 2R0 it constitutes 1.25 of uo and 
reaches its maximum value on the tube surface: 

u, = 2u0 sin 4. (2) 

Equation (2) suggests that the fluid velocity is zero in the front and rear 
stagnation points and reaches its maximum at 4 = 90". By use of Eq. (2) 
and Bernoulli's equation, the pressure distribution on the tube surface can 
be determined from 

P x = 6  - Po 
P =  = 1 - 4 sin2 4, P d P  (3) 

where p o  is the static pressure in the channel. 
Pressure is inversely proportional to velocity, i.e., it is a maximum at 

stagnation points and a minimum in the main cross section. I t  follows from 
the symmetrical pressure distribution on the tube surface that the tube 
offers no resistance to the flow of an ideal fluid (d'Alembert paradox). 

B. FLOW OF A REAL FLUID 

1. General Flow Patterri 

Because of the viscosity of real fluids, on the front portion of the tube a 
laminar boundary layer is formed, the thickness of which increases down- 
stream. According to the ratio of inertial and viscous forces i n  the flow, 
characterized by its Reynolds number, several types of  flow regimes can be 
distinguished. 

At Re < 1 inertial forces are negligibly small as compared to frictional 
forces [21], and if the tube is streamlined, the laminar boundary layer 
separates from the surface at the rear stagnation point. 

With increasing Reynolds number, the relative influence of inertial forces 
increases, and at Re > 5 the laminar boundary layer separates the tube 
surface without reaching the rear stagnation point. Behind the tube there 
appears a symmetrical pair of stable vortices which form a circulation region 
confined by flow lines. With a further increase in Reynolds number the 
vortices become extended downstream, and at Re > 40 the stability of 
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movement in  the circulation region is lost, and the vortices are periodically 
shed from the rear of the tube. 

The phenomenon of boundary layer separation is due to internal friction 
within the boundary layer, and is closely connected with the pressure and 
velocity distribution around the tube. As is known, a certain amount of 
energy is consumed in overcoming the internal friction in the boundary 
layer and thus dissipated. With a velocity decrease and pressure increase 
over the rear portion of the tube (dpldx > 0)  the remainder of the energy 
does not suffice to overcome the increased pressure. Fluid particles of the 
boundary layer that have low velocity because of friction become even 
slower, until they eventually stop and start moving in the opposite direction. 
Fluid sheets of opposite movement begin to curl, and give rise to vortices 
that shed from the tube. The boundary layer separation point is at approxi- 
mately 4 = 80". This flow pattern is observed up to the critical Reynolds 
number of 2 x lo5. 

With a further increase of Reynolds number, the boundary layer becomes 
turbulent and receives additional energy from the main flow through turbu- 
lent fluctuations. This results in the displacement of the turbulent boundary 
layer downstream. The separation point, according to measurements in 
air flow by Achenbach [22], is removed to 4 = 140". At Re = 2 x lo6 
(Fig. I )  the separation point is moved up to 4 = 115" and the supercritical 
flow regime is established. 

Re 
FIG. 1. Position of the separation point on a tube as a function of R e  [22]. 

Transition from a laminar to a turbulent boundary layer is due to the 
loss of stability in the flow, which depends on the thickness of the laminar 
boundary layer and the shape of velocity profile that is directly determined 
by the pressure gradient. I n  [23] the points of loss of stability in flows past 
different bodies have been calculated. I t  is interesting to note that on a 
circular tube, the displacement of the point of transition with change of 
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FIG. 2. Instability point in the boundary layer on a tube as a function of Re. 

Reynolds number is not large (Fig. 2). At very high Reynolds numbers the 
point of loss of stability and subsequent transition to turbulent flow is at 
4 = 75". 

2. Flow in the Wake 

As noted above, at Re > 40 a vortex path is formed behind the tube. 
It appears as the result of a loss of stability in  the circulation region, formed 
previously by a pair of vortices. With Reynolds number increasing further, 
a regular path of staggered vortices is observed in the wake. According to 
measurements of Roshko [24], velocity fluctuations in  the wake have a 
distinct periodicity, noted even at a considerable distance behind the tube. 
Interaction between vortices and fluid in the wake does not disturb the flow 
in the range of Reynolds number up to 150. With a further increase in  
Reynolds number, irregular velocity fluctuations in the wake are observed. 
These give rise to small vortices which are formed at a certain distance 
from the tube, and are destroyed much earlier than the ones formed from 
the laminar layer. 

At Re > 300, vortices formed behind the tube consume only a certain 
part of the energy of disturbances of the separated boundary layer. The 
rest of the energy dissipates in the wake in the form of small turbulent 
vortices. This flow pattern persists up to the critical regime. In the super- 
critical regime regular fluctuations are superimposed on the turbulent ones. 

Thus in a flow with regular vortex shedding there is a constant and 
intensive exchange of substance and momentum between the circulation 
region and the undisturbed flow. At Re < 40 there is only molecular 
exchange as the vortices are not shed. 

Periodicity of vortex shedding is characterized by the Strouhal number, 
which establishes the relation between vortex shedding frequency, cylinder 
diameter, and main flow velocity: 

SII = f D / u o .  
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It is obvious from Fig. 3 that with increasing Reynolds number, the Strouhal 
number increases up to 0.2 but is practically constant in the range of Re 
from lo3 to 2 x lo5. In the critical regime, the Strouhal number increases 
greatly up to 0.46. In the supercritical regime it decreases to 0.25, as reported 
in Roshko [25:1. 

0.5 

0.4 

5 0.3 

0.2 

0.1 

FIG. 3. 

Re 
to6 

Dependence of Sh for a tube on Re. 

10' 

Flow analysis reveals that in the predominant range of Reynolds number 
vortices are shed intermittently from the two sides of the tube and symmetri- 
cally to the wake axis. Periodical and asymmetrical variations in pressure 
distribution on the surface give rise to forces of intermittent direction, 
which lead to crosswise vibration of the tube [26]. This has to be taken 
into account i n  the design of heat exchangers. 

3. Vdocity Distribution Around the Tub<. 

The variations in the hydrodynamic conditions in  the flow around the 
tube are illustrated by the distribution of pressure and local velocity. 

Figure 4, compiled from experimental data of various authors, shows 
that up to 4 == 50" the distribution of pressure as well as of local velocity 
around the tube outside the boundary layer does not depend on Reynolds 
number and correlates well with calculations according to Eq. (3). The 
influence of Reynolds number begins at 4 > 50". The solid circles in the 
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FIG. 4. Distribution of pressure coefficient P = (p,=+ - po)/(puo2/2) around a tube at 
various Re. Curve I-Re = 1.1 x lo5, after Fage and Folkner [27]; curve 2-8.4 x lo6, 
after Roshko [25]; curve 3-8.5 x lo5, after Achenbach [22]; curve 4-potential flow. 

figure represent the points of boundary layer separation. The location of 
these points is characterized by the angle c$ at which the pressure downstream 
is stable and constant. 

From measurements ofpressure on the surface and by the use of Bernoulli's 
equation, the velocity distributions on the outer edge of the boundary layer 
can be determined. The velocity distribution in a real fluid differs consider- 
ably from that in an ideal fluid because of the displacement of the main 
flow by the boundary layer and the complicated vortical flow in the wake. 

A regular velocity distribution outside the boundary layer is characteristic 
only for the front portion of a tube and is expressed by 

(4) u , / u ~  = 3 . 6 3 1 ( ~ / D )  - 2 . 1 7 1 ( ~ / 0 ) ~  - 1.514(~/D)~. 

4. Drag of the Tube 

The total drag D, of the tube is equal to the sum of the forces of friction 
and pressure. At very low Reynolds numbers the tube is streamlined. 
According to theoretical calculations [2 I ]  and measurements, frictional 
forces prevail in the drag. 

With an increase in Reynolds number, the relative influence of inertial 
forces increases and that of frictional forces becomes negligibly small. in 
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the range of ari intensive vortical flow past a tube, the frictional drag con- 
stitutes just a Sew percent of the total drag. Nevertheless, the flow pattern 
may be judged from the frictional distribution around the tube. Data of 
different authors (Fig. 5 )  for air flow suggest an increase of friction from 

4 

3 

2 

u" 

1 

0 

-1 
' 0  60 1 

Q 
I 180 

- 
FIG. 5 .  Distribution of skin friction coefficient c, = (T/puo2)dRe around a tube at 

various Re. Curve 1-Re = 8.5 x lo5 and curve 2-3.6 x lo6, after Achenbach [22]; 
curve 3-the calculation curve; curve G 1 . 1  x lo5, after Fage and Folkner [27]. 

zero to a maximum at 4 = 60" and a subsequent decrease to a minimum. 
The solid circles represent boundary layer separation points, where friction 
is equal to zer,o. The first minimum of the curve at Re = 8.5 x lo5 cor- 
responds to the boundary layer transition from laminar to turbulent flow. 

Figure 6 shows the variation of frictional drag of a heated tube in air 
flow as measured by Ziugida and Ruseckas [28]. A definite influence of heat- 
ing on frictional drag can be noticed. 

From the position of the separation points on the tube, the width of the 
circulation region and consequently the pressure drag may be determined. 
Pressure drag is caused mainly by boundary layer separation and depends 
on the width of the circulation region and the frequency of vortex shedding. 
The maximum width of the vortex region in the subcritical flow regime 
corresponds to the maximum pressure drag coefficient and minimum Strouhal 
number, and in the critical flow regime the minimum width of the vortex 
region corresponds to the minimum pressure drag coefficient and maximum 
Strouhal number. 
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FIG. 6 .  Distribution of skin friction coefficient around a tube in the presence of heat 
transfer at Re = 5.2 x lo4. Curve 1-Ar = 50°C; curve 2-At z 30'C; curve 3-At g 0. 

Re 

FIG. 7. Drag coefficient of a tube C,, = D,/(puo2 DL/2)  as a function of Re. 
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The general flow pattern past a tube is reflected in the variation of drag 
coefficient C ,  with Reynolds number. It is clear from Fig. 7 that the depen- 
dance of C, on Re in  the range of the subcritical regime is negligible and 
at Re > 2 x lo5 the drag coefficient decreases sharply. This is because the 
boundary layer separation point is moved downstream, as mentioned above, 
and with the convergence of the wake, the drag decreases considerably. 
The dotted line at low Reynolds numbers corresponds to calculations of 
potential flow past a tube [21]. 

Turbulence in the main flow exerts a certain influence on the flow pattern 
around immersed bodies. In the subcritical regime turbulence has no effect 
on the drag coefficient, but in  the range of the critical regime the variation 
of drag coefficient, indicated by a dotted line in Fig. 7, depends on the tur- 
bulence. The origin of the critical flow regime is displaced to lower Reynolds 
numbers, with an increase of turbulence. 

A rough surface of the immersed tube has a similar influence on the 
drag coefficient and flow pattern. As the relative roughness of the surface 
increases, the Reynolds number at which the critical flow regime is estab- 
lished decreases. On the other hand, the presence of roughness increases 
the drag coefficient C, in the critical flow regime. 

C. FLOW IN A RESTRICTED CHANNEL 

In practice, circular tubes are usually placed in flows restricted by walls 
and with considerable blockage of the flow cross section (Fig. 8). In the 
case of a circular tube in a channel, blockage is expressed by the ratio DIH.  

'T 

fn/ 
FIG. 8. Different conditions of flow past a tube. 

As the blockage ratio increases, the velocity around the tube outside the 
boundary layer increases, and the pressure and velocity distribution are 
changed accordingly. 

In  Fig. 9 the velocity distribution for a distance of 4.2 m m  over the tube 
surface is represented as measured by [29] at a main flow velocity of 20 m 'sec 
and for blockage ratios of 0.39 and 0.63. In the separation region particles 
of fluid near the surface move in the opposite direction, as seen from Fig. 9. 
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FIG. 9. Velocity distribution around a tube. Curve I-DIH: 0.63, and curve 2- 
D / H  = 0.39, after Akilba'yev et al. [29]; curve 3--D/H = 0.16, after Perkins and 
Leppert [30]. 

As was stated by the same author, the increasing blockage ratio from 0 to 
0.8 causes the minimum pressure point to be displaced from I$ = 70" to 
90°, and the separation point moved downstream to 4 = 100". 

The change in blockage ratio alters flow patterns in  the wake. Periodical 
vortex shedding in the rear is observed at low blockage ratios. At higher 
ratios exceeding 0.6 unperiodical vortex flow behind the tube [29] is estab- 
lished. As a consequence, the drag coefficient C, increases sharply. 

To take into account the blockage ratio, the mean velocity in the minimum 
free cross section of the channel is usually used as a reference in technical 
calculations of heat transfer and drag. 

where u,, is the velocity of an unrestricted flow. 
This choice of reference velocity, however, allows no comparison between 

drag and heat transfer i n  systems of tubes in various arrangements since 
different velocity distributions on the surface are not taken into account. 
Calculated reference velocities may be the same on a tube in an unrestricted 
flow, a tube in  a channel, and one in the first row of a bank, velocities in 
the front portion being different. For this reason, the introduction of an 
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average velocity seems reasonable, i.e., the average value of the velocity 
evaluated by integrating over the cylinder surface, 

u = f l:u(x) d x  

or 
IC D -' 

u = -4ii) . 

At high blockage ratios, the flow pattern is basically changed, and the 
above mentioned reference velocities are no longer applicable in  determining 
drag and heat transfer coefficients. Thus in the calculation of drag and heat 
transfer at D/H' > 0.8 various semi-empirical equations [29, 301 are recom- 
mended for the evaluation of a reference velocity. 

111. Flow Past a Tube in a Bank 

A. GENERAL FLOW PATTERN 

The flow pattern around a tube in a bank is influenced by the surrounding 
tubes. In a contraction between adjacent tubes of a transverse row, the 
pressure gradient changes even more. This causes a corresponding change 
of velocity distribution in the boundary layer and of the flow pattern in 
the rear. 

The flow pattern around a tube in a bank is determined by the arrange- 
ment and geometrical parameters of the bank. Banks of in-line and a stag- 
gered arrangement of tubes are most common (Fig. lo), and they are usually 
defined by the relative transverse c1 = s , / D  and longitudinal h = s,/D 

s, 

O i d i  
FIG. 10. Arrangement of tubes in a bank. 
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center-to-center distances, called transverse and longitudinal pitches, respec- 
tively. In banks of both arrangements, flow around a tube in the first row 
is similar to that around a single tube, but the flow pattern in subsequent 
rows is different. 

In staggered banks, the flow is comparable with flow in a curved channel 
of periodically converging and diverging cross section. Thus the velocity 
distributions around tubes in different rows in a staggered bank have a 
similar character. Flow in an in-line bank is sometimes comparable with 
that in a straight channel. The velocity distribution in the minimum cross 
section of an inner row is mainly determined by the pitch ratio. Two extreme 
cases of the relative longitudinal pitch equal to unity and to infinity can be 
noted here. Flow in the first case is closely similar to a flow in a channel, 
and in the other case it is a flow through a single transverse row, with the 
velocity profile of the flow behind the preceding row being straightened. 
In intermediate cases, inner rows are located in the circulation regions of 
the preceding rows, and the flow preceding one of the inner rows is vortical 
with a nonuniform velocity distribution. 

At low Reynolds numbers the flow in a bank is laminar with large scale 
vortices in the circulation regions, their effect on the boundary layer of the 
front portion of a subsequent tube being eliminated by viscous forces and 
a negative pressure gradient. The flow in the boundary layer is laminar. 
Such a flow pattern existing at Re < lo3 may be described as predominantly 
laminar. 

With increasing Reynolds number, the flow pattern in a bank undergoes 
considerable variations. The flow between tubes becomes vortical with a 
higher degree of turbulence. Although the front portion of an inner tube 
is influenced by the vortical flow, a laminar boundary layer persists on it. 
The pattern of flow, with a laminar boundary layer on the tube being under 
the influence of a turbulent flow and with an intensive vortical flow in the 
rear, may be described as mixed. 

The production of turbulence and its intensity in a bank depends on the 
bank arrangement and Reynolds number. In banks of large longitudinal 
pitches, the transition from laminar to turbulent flow in the bank is gradual 
and depends on the increase in Reynolds number. The flow in the bank 
consists initially of large scale vortices, the size of which decreases with 
increasing velocity. Thus in the range lo3 < Re < lo4 there may exist a 
flow pattern intermediate between the predominantly laminar and the 
mixed one. 

In staggered banks with small longitudinal pitches at  Re > lo3 small 
vortices appear suddenly and flow in the bank becomes turbulent instantly. 

The mixed flow regime covers a wide range of Reynolds numbers and 
alters its character only at  Re > 2 x lo5.  Then flow in the bank becomes 
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highly turbulent. The total drag of the bank varies like that of a single tube 
in the critical flow regime. 

Thus we may distinguish three flow regimes in banks with respect to the 
Reynolds numbers: a predominantly laminar flow regime at Re < lo3, a 
mixed or  subcritical flow regime a t  5 x 10’ < Re < 2 x lo5, and a pre- 
dominantly turbulent o r  critical flow regime at Re > 2 x lo5. 

B. VELOCITY DISTRIBUTION 

Pressure and  velocity distributions around a tube in a longitudinal row 
of a bank differ substantially from that around a single tube. Figure 1 1  

FIG. 11. Distribution of pressure coeficient P = 1 - [ ( P + = ~  - p + ) / ( p u 2 / 2 ) ]  on a tube 
in a bank 1311. Curve 1-fourth, and curve 2-first rows o f  an in-line bank; curve 3--first, 
and curve 4-fourth rows o f  a staggered bank. 

illustrates the variation of pressure coefficient around tubes in the first and 
the fourth rows of in-line and staggered banks for a = 2.0 and h = 2.0 
at  Re = 10,800 [31]. The pressure coeficient for a tube in a bank is given by 

where u is the mean velocity in the minimum free cross section. 
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Equation (3) does not apply to the determination of pressure coefficient 
variation for a tube in a bank, because the static pressure varies considerably 
along a bank. 

It is obvious that flow around tubes in the first row is similar to that 
around a single tube in the subcritical flow regime. But on any of the inner 
tubes of a staggered bank, the pressure in  front of the separation point is 
higher than that on a single tube. In  inner rows of an in-line bank, the 
maximum pressure point is at about 4 = 40" where the impact of the main 
stream on the tube surface occurs. Thus there are two impact points and 
two maximum pressure points on any of the inner tubes of an in-line bank. 
It has been noticed by Bressler [31] that for in-line banks of small pitch the 
pressure at one of the points is higher. From the third row on, the reciprocal 
positions of the minor and major pressure points interchange from row to 
row. 

For in-line banks, the position of the impact point is dependent on the 
longitudinal pitch and Reynolds number. An investigation [32] of the 
pattern in the wake behind the tube at Re = 13,000 is interesting in this 
respect. The distance between the two tubes was changed in the range 
1.6 < L / D  < 9 .  Figure 12 shows a qualitative change of pressure distribu- 
tion along the perimeter of the second tube for L,'D 6 3, substantially 
differing from that of a single tube in an infinite flow. For LID = 6 the 
point of attack and impact point coincide at 4 = 0, and for LID = 1.6 the 

cp 

FIG. 12. Variation of pressure coefficient as a function of longitudinal pitch 1321. 
Curve I-LID = 3;  curve 2-L/D = 6; curve 3-L/D = 9. 
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impact point is removed to 4 = 75". The general flow pattern based on the 
results of [32] is illustrated in  Fig. 13. 

6D . 
FIG. 13. Pattern of flow past a tube in a longitudinal row. 

The position of the impact point is also influenced by Reynolds number. 
Investigation [20] of flow around a tube in the inner rows of the in-line 
bank, 2.0 x 1..3, suggests that for low Reynolds numbers the impact point 
is close to the front stagnation point, but with an increase of Re to 4000 i t  
is removed to (6 = 55" ,  and later at Re > 4000 again to  the front (Fig. 14). 
Figures 13 and 14 imply that for in-line banks, laminar boundary layers 
develop from the two impact points and separate from the tube at  approxi- 
mately 4 = 145". Sometimes there is a laminar-turbulent transition in the 
boundary layer. 

60 

40 

4 

20 

0 
4 6 8 d  2 4 6 8 1 0 4  2 4 6 8 1 6  

Re 

FIG. 14. Position of the impact point on a tube in a bank of in-line arrangement as a 
function of Re. 
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In the case of flow around a tube in staggered banks, as in the case of a 
single tube, the flow is divided at the front stagnation point and a laminar 
boundary layer develops on the front portion of an inner tube. Figure 15 
suggests a certain influence of Reynolds number on pressure distribution 
of an inner tube in the staggered bank. The position of the boundary layer 

3 
cp 

FIG. 15. Distribution of pressure coefficient in inner rows of staggered banks as a 
function of Re. Curve I-second, and curve 2-fourth row of bank, 2.0 x 1.4, at Re = 

1.5 x lo6 [33]; curve 3-second, and curve 4-fourth row of bank, 2.2 x 1.5, at Re = 

2.7 x lo4 [34]. 

separation point in this case differs from that of a single tube because the 
transition from a laminar to a turbulent boundary layer moves this point 
to 4 = 150". At high Reynolds numbers [33] the position of the separation 
point (Fig. 16) is somewhat different. 

Re 

FIG. 16. 
of Re [33]. 

Position of the separation point on a tube in a staggered bank as a function 



HEAT TRANSFER FROM TUBES IN CROSSFLOW 111 

In studies of the velocity distribution in banks, the influence of the trans- 
verse pitch should be mentioned. With a decrease of the transverse pitch, 
the velocity in the free cross section increases rapidly. The calculations of 
mean velocity iin the minimum free cross section, as a function of the trans- 
verse pitch, ma.y be based on the constant rate of volume 

(7) 

(8) 

u = u,[a/(a - I)]. 

uq = uo[a/(a - sin 4)] .  
The mean velocity in any free cross section is then calculated by 

Theoretical calculations of velocity distributions, as well as their deter- 
mination by the method of electrical analogy for a potential flow through 
a row, yield velocity profiles in the minimum free cross section which have 
a more or less pronounced concave shape in the central part, their values 
depending on the transverse pitch. 

In the flow of a real fluid through a row, under the influence of viscous 
forces, boundary layers are formed on the surface. The velocity near the 
surface decreases, the velocity profiles are straightened, and the concave 
shapes in the curves diminish accordingly. Plots of pressure distribution 
imply that velcicity distributions around a tube in a longitudinal row differ 
substantially from that of a single tube. Changes of the longitudinal pitch 
cause considerable changes in velocity distributions on the front and rear 
portions of an inner tube. 

c. DRAG OF A TUBE IN A BANK 

Figure 17 shows the distribution of skin friction around a tube in a bank 
as a function of Reynolds number [33]. The effect of Reynolds number on 

4 

3 

-1 
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'p 

FIG. 17. Distribution of skin friction coefficient cf = (~ /pu ' )d \ /Re on a tube in a 
staggered bank, 2.0 X 1.4, [33]. Curve I-Re = 1.3 x los; curve 2-Re = 8.0 x lo6; 
curve 3-Re = 3.7 X lo5; curve 4-Re = 1.4 x lo6. 
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the friction is most evident in  the region 60" < 4 < 75". The friction drag 
of a tube in a bank constitutes only about 5 %  of the total drag, and in the 
critical flow regime it decreases to about 0.5%. Surface roughness causes 
an increase of friction drag in the critical flow regime. 

The pressure drag of a tube in a bank is determined mainly by the 
longitudinal pitch. In an in-line bank for b < 3 under the influence of the 
preceding tube, the pressure drag decreases suddenly. The hydraulic resis- 
tance of banks of tubes will be generally considered in Section VII. 

IV. Influence of Fluid Properties on Heat Transfer 

The heat transfer of a single tube and a tube in a bank is determined 
mainly by flow velocity, physical properties of the fluid, heat flux intensity, 
heat flux direction, and the arrangement of the tubes. The dimensionless 
relation is as follows 

For the generalization of experimental data the following power equation 
based on the functional relation (9) is commonly used 

Nu = cRemPrn. (10) 
For gases of equal atomicity, i.e., for which the Prandtl numbers are equal 
and constant, Eq. (10) becomes 

Nu = cRe'". (1 1) 

A. INFLUENCE OF PRANDTL NUMBER 

Most of the fluids commonly used in practice have Prandtl numbers 
ranging from 1 to  1000. This means that in calculations of heat transfer a 
wrong choice of power index of Prandtl number may lead to considerable 
errors. A power index of Prandtl number equal to 0.31-0.33 is still accepted 
by some authors. This value of n is suggested by theoretical investigations 
of heat transfer in a laminar boundary layer on a plate. However, later 
calculations and experimental measurements [35, 361 have revealed the 
dependence of the power index of the Prandtl number on the flow regime 
in the boundary layer. For a laminar boundary layer on a plate n = 0.33, 
but for a turbulent boundary layer it amounts to 0.43. 

The above suggests that for mean heat transfer from a tube the value 
of n may be somewhere between 0.33 and 0.43. 
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Investigations of heat transfer in laminar and turbulent boundary layers 
suggest certain changes in the value of the power index with large variations 
of Prandtl number. Numerical solutions of heat transfer in  the region of 
the front stagnation point, performed by V. MakareviEius and the author, 
gave n = 0.37 for Pr < 10 and n = 0.35 for Pr > 10. 

Our detailed studies of mean heat transfer from a tube in cross flows of 
transformer oil, water, and air [37] at tw = const. yielded an approximate 
value of the power index of the Prandtl number between 0.37 and 0.38. 
In later investigations of local heat transfer from a tube in flows of various 
fluids [38] at q ,  = const. it was determined that n varies along the tube 
perimeter, reaching the value of 0.39 in the rear. The mean value of n is 
equal to 0.365. The mean value of ti for a circular tube, 0.37, is acceptable 
for Pr < 10 and somewhat lower for Pr > 10. 

Our investigations of heat transfer [20] in 27 banks of tubes of different 
arrangements iii flow of various fluids in  the range of Pr from 0.7 to 500 
suggest (Fig. 1 8 )  that for the mean heat transfer of all sorts of banks the 

10' 
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FIG. 18. Determination of the power index n for Pr in various staggered banks. 
1-Water; 2-air; 3-transformer oil; K ,  = Nu, Re;0'60(Pr,/Pr,)-0.2s. 

power index of the Prandtl number has the value 0.36. In practical calcula- 
tions of the mean heat transfer of banks of tubes n = 0.36 is sufficiently 
accurate. 

B. CHOICE OF REFERENCE TEMPERATURE 

In the process of heat transfer, the fluid temperature varies, which causes 
variations of its physical properties. Thus evaluation of the influence of the 
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fluid physical properties on heat transfer is closely connected with accounting 
for the temperature variations in the boundary layer, in other words, with 
the choice of the so-called reference temperature, according to which the 
physical properties are evaluated. 

The influence of the variations of physical properties may be established 
by two methods. By the first method the physical properties are referred to 
the main flow temperature and an additional parameter is introduced in 
Eq. (10) to account for the properties variation. The second method is to 
choose a certain value of temperature between that of the flow and the 
wall, which enables evaluation of the influence of the physical properties on 
heat transfer. In this case the relations for the heat transfer calculation 
remain the same as for constant physical properties. 

Analysis of relations for heat transfer calculations in  the flow of gases, 
proposed by different authors, shows that the main cause of discrepancies 
is due to different choices of the reference temperature. 

Detailed experimental investigations of heat transfer from a single tube 
[I51 and banks of tubes [39] in the crossflow of gases suggest that the 
physical properties should be evaluated at the main flow temperature t , .  
This generalizes the results of heat transfer in gas flow with sufficient accuracy 
and no additional parameters for the evaluation of temperature difference 
are necessary. In investigations of heat transfer of banks of tubes in air at 
high Reynolds numbers [40] the properties are also referred to the main 
flow temperature t,. 

A certain mean temperature of the boundary layer has sometimes been 
proposed as the reference temperature by some authors [9]. We prefer to 
take the main flow temperature as the reference in the range of moderate 
temperatures. This method is simple in practice and sufficiently accurate 
for practical purposes. 

In flows of viscous fluids the intensity of heat transfer depends markedly 
on physical property variation in the boundary layer with heat flux direction 
and temperature difference. Experimental results referred to the main flow 
temperature are higher for heating than for cooling, the discrepancy increas- 
ing with the increase of temperature difference. 

Mikhe’yev [41] has proposed to account for the influence of sharp changes 
in the physical properties of fluids in the boundary layer near the surface 
by the ratio Pr,/Pr, to the power 0.25. The ratio pf/pw is often used also. 
It should be noted that for viscous fluids, like water and oil, it is mainly 
viscosity that changes with temperature, and therefore Prf/Pr, % pf/jiw. 
However, calculations of heat transfer in laminar boundary layers on a 
plate in flows of various fluids [42] lead to the conclusion that the influence 
of other physical properties constitutes up to 7 % of the total influence. 

Our investigations [37] confirm that variations of viscosity and other 
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properties in the boundary layer on a circular tube may well be accounted 
for by the ratio Prf/Pr,, with a corresponding power index. In this case 
the results are referred to the main flow temperature. 

Computer aided calculations [42] suggest that for a laminar boundary 
layer on a plate the power index of Pr,/Pr, is 0.25 for heating and 0.19 for 
cooling. It was also found to depend to a certain extent on the value of 
Pr,, increasing slightly with high values of the latter. In Fig. 19 the curve 
and circles correspond to theoretical calculations and experimental measure- 
ments [35], respectively. 

FIG. 19. Local heat transfer of a plate in laminar flow as a function of heat flux 
direction. 1 ,  2-heating of water and transformer oil, respectively, after hkauskas and 
Ziugida [35]; 3-calculated curve, after hentianas et al. [42]; a,-heat transfer coefficient 
at constant physical properties. 

Our investigations [43] of changes of the power index of Pr,/Pr, for the 
case of a turbulent boundary layer on a plate give n = 0.25 for heating and 
n = 0.17 for cooling (Fig. 20). Thus the power index of Pr,/Pr, is lower for 
cooling than for heating. In any case, for most practical purposes, n = 0.25 
is sufficiently accurate for both cases. 

Some other parameters have also been proposed to account for radical 
changes of physical properties [44]. However, we still prefer the ratio 
Pr,/Pr, as the inost simple and convenient to use. 

FIG. 20. Local heat transfer of a plate in turbulent flow as a function of heat flux 
direction. 1-Transformer oil; 2-glycerine. 
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FIG. 21. Determination of the power index for Pr,/Pr, in different staggered banks. 
I-Transformer oil; 2-water; 3-air; K 2  = Nu, Re,"'" Prf0'36. 

In Fig. 21 the changes of intensity of heat transfer in staggered banks as 
a function of Pr,/Pr, are shown from our experiment [20]. When physical 
properties are referred to the main flow temperature the ratio (Pr,:'Pr,)0.25 
accounts satisfactorily for changes of the physical properties both for heating 
and cooling. For gases with constant Prandtl number, Pr,/Pr, = 1 .  

Therefore for the calculation of heat transfer from a tube in the cross- 
flow of viscous fluids, the following relation will be be used 

Nu, = ~Re,"lPr,"(Pr,/Pr,,,)~~~~. (12) 

V. Heat Transfer of a Single Tube 

A. LOCAL HEAT TRANSFER 

1. Theoretical Calculations of the Local Heat Transfer 

The analysis presented in Section 11 suggests that flow past a single tube 
is a rather complicated process. The same applies to its heat transfer. At 
various Reynolds numbers the boundary layer on the front portion of a 
tube is laminar. Therefore theoretical methods for the calculation of heat 
transfer may be applied. The rear portion is in the region of a complicated 
vortical flow. Here the theoretical calculation of heat transfer is almost 
impossible, though some attempts have been made in recent years. Further- 
more, the heat transfer i n  the front stagnation point and in  the boundary 
layer separation region has some peculiar features. 

First, the calculations of heat transfer on the front portion of a tube by 
means of an approximate integral method were performed by Kruzhilin [45]. 
This method has been used for the calculation of heat transfer from a plate 
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and in a modilied form was applied to the evaluation of heat transfer from 
the front portion of a tube. The following relation for local heat transfer 
was obtained 

Nu, = [2:F(q5)]Reo.5Pr0.33, (13) 

where F ( 4 )  is a hydrodynamical factor, accounting for the changes in the 
boundary layer around the tube and the velocity distribution outside the 
boundary layer. The relation applies only for Pr 2 2.6. 

Other theoretical methods have been applied to the heat transfer calcula- 
tions of wedge-shaped bodies, having a velocity variation outside the 
boundary layer which is expressed by the exponential relation 

u = (.X'fl'. (14) 

These methods can be used only for some definite portions of a circular 
tube. Thus for the region near the front stagnation point the value of m, in 
Eq. (14) is unity and for the separation region m ,  = -0.0804. In the first 
case, the velocity outside the boundary layer changes linearly along the 
perimeter. 

Boundary layer equations can be applied to the heat transfer from wedge- 
shaped bodies: 

all all a Z u  d p  
ax ay all n x ?  

p u -  + pu- = p 7  - - 

all au  - + - = o ,  ax a y  
aT dT a2T 

pc u -  + pc u -  = 2 7 ,  
p ax p a y  ay  

together with Eq. (14), and with boundary conditions: 

for y = 0 u = v = 0, T =  T,, 

for y = co u = u x ,  T = Tf. 

The flow function 

and the following new variables are also introduced 
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Equations (15) have been solved for the above conditions by a number 
of authors. Heat transfer coefficients calculated for different wedge profiles 
for the range of Prandtl number from 0.7 to 10 were presented by Eckert 
[46] in  the form 

N U J G  = 0.56A,'J2 - /?. (17) 

The generalization of calculated data [46] yields the following expression 
for A :  

, (18) 
A = ( p  + 0 . 2 ) O . l l  pr0.333f0.067p-0.02611* 

where 
/? = 2m, '(ml + I ) .  

By substituting for /? in  Eq. (171, the local heat transfer can be calculated 
in regions near the front stagnation point and near the separation point 
assuming the above values of m , .  

For flow past curvilinear bodies, the power index in Eq. (14) may be 
determined from 

x nu, 
m1 =u,K' 

where u, is the local velocity outside the boundary layer. 
For a circular tube in crossflow, the velocity distribution on the front 

portion is determined from Eq. (4) according to Hiemenz [46]. The power 
index determined from Eq. (20) accounts for the velocity distribution around 
the tube decreasing downstream from uni ty  in the front stagnation point 
to zero and below zero. 

For heat transfer at the front stagnation point, the following relation is 
derived from Eqs. (17) and (18) for Pr < 10: 

Nu, = 0.57 Re:.5 (21) 
Equation (18) suggest that the power index of the Prandtl number decreases 

downstream along the perimeter, reaching the value of 0.3 in the separation 
region. 

Merk [47] proposed a simplified method for heat transfer calculations 
from the front portion of a tube for Pr > 10. He used only the first term 
in the polynomial of the influence of Pr and /?, neglecting the rest as infini- 
tesimally small at high Prandtl numbers. The relation for heat transfer 
calculation therefore at the front stagnation point is 

Nu, = 0.569 Re:,5 (22) 
A numerical solution similar to that of Eckert's [46], performed by 

MakareviEius and the author in the range of Pr from 10 to 100, yielded the 
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following relation for heat transfer in the region near the front stagnation 
point: 

Nu, = 0.57 (23) 

As a result of the exact solution of the boundary layer equations, Frossling 
[48] proposed an asymptotic relation for the calculation of local heat transfer 
from the front portion of a tube in air: 

Nu, = [0.9450 - 0 .7696(~ /0 )~  - 0.3478(~/0)~]  Re'.'. (24) 
The relation was obtained by using a velocity distribution outside the 
boundary layer similar to that in  Eq. (4). 

The relations presented above refer only to the heat transfer of the front 
portion of a tube. Theoretical calculations by Krall and Eckert [49] apply 
to the whole perimeter of a tube at low Reynolds numbers. At first the 
lines of flow in the front and rear regions were calculated, and the heat 
transfer was determined from the temperature gradient at the tube surface, 
as a result of numerical solutions of the boundary layer equations in  
cylindrical coordinates by the method of finite differences. From 800 to 
1000 iterations were performed. Solutions were obtained for the two 
boundary conditions on the wall, i.e., constant surface temperature and 
constant heat flux. Results of the calculations at two different values of 
Reynolds number are presented in Fig. 22. The point of minimum heat 

FIG. 22. Calculated local heat transfer distributions [49]. Curves 1-4, = const. 
Curves 2-t, = const. 
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transfer is clearly removed downstream and is located in the region between 
125 and 145", which is considered characteristic of low Reynolds number 
flow. The influence of boundary conditions on the heat transfer is also 
obvious. For a constant heat flux, the heat transfer is more intensive than 
for a constant surface temperature, the average difference of the mean heat 
transfer being in the range of 15 to 20% and depending on the Reynolds 
number. It is interesting to note that in the front portion up to  4 = 30" 
the heat transfer is independent of the boundary conditions on the wall. 
Different theoretical calculations of the heat transfer of the front portion in 
air lead to similar results (Fig. 23). 

FIG. 23. Comparison of heat transfer calculations in the front portion of a tube. 
Curve 1-after Kruzhilin [45]; curve 2-after Merk [47]; curve 3-after Eckert [46]; 
curve +after Frossling [48]. 

Some recent publications have described attempts to calculate the heat 
transfer in the rear portion of a circular tube at higher values of Reynolds 
numbers. However, these approximate methods are based on simplified 
flow patterns and do not take into account the numerous factors of separa- 
tion. Therefore experimental data are preferred in practice for this case. 

2. Heat Transfer in Gas Flow 

At low Reynolds number, as long as the vortical path is formed, theo- 
retical results of local heat transfer [49] correlate well with experimental 
data 1501 (Fig. 24). The heat transfer in the rear portion is at a minimum. 

For higher values of Reynolds number, the heat transfer is a minimum 
at the separation point and increases downstream. Nevertheless, the variation 
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FIG. 24. Local heat transfer of a tube at low Re. Curves 1,4-alculations [49] at  Re = 

100 and 20, respectively; curves 2, 3-experimental data [50] at Re = 120 and 23, 
respectively. 

of heat transfer is greatly under the influence of the Reynolds number. At 
low Reynolds numbers, the heat transfer in the front portion is higher than 
in the rear (Fig. 25). With increasing Reynolds number, the heat transfer in 

FIG. 25. Variation of heat transfer around a tube at different Re. Curve 1-Re = 

5.3 x lo3, and curve 2-Re = 3.2 X lo4, after Meel [Sl]; 3-theoretical curve, after 
Frossling [48]; curve 4-Re = 2.1 x lo4, after Kruzhilin and Shvab [14]; curve 5-Re = 

9.9 x lo4, and curve 6-Re = 2.1 x lo5, after Giedt [52]. 
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the rear portion increases, and for Re > 5 x lo4 it is higher than in the 
front portion. For Re > 2 x lo5 the variation of the heat transfer coefficient 
acquires a new character under the influence of the transition from laminar 
to turbulent flow in the boundary layer. The point of minimum heat transfer 
in this case is removed downstream. A vortex shed favors the access of a 
new cold mass of fluid to the surface, and the heat transfer increases sud- 
denly. It is obvious that the heat transfer reaches a maximum at 4 = llOo, 
and decreases downstream. 

It should be noted that heat transfer is also influenced by the turbulence 
of the main flow. The calculations refer to the laminar main flow. There- 
fore a coincidence of calculated results with experimental data obtained in 
the flow with low turbulence is possible. Experimental points for a highly 
turbulent main flow are considerably higher than the theoretical curves in 
Fig. 25. 

Recent investigations [53-561 suggest that the local heat transfer of a 
circular tube increases considerably with the turbulence of the main flow. 
Figure 26 presents the results of heat transfer measurements around a tube 
[53] for different levels of turbulence of the main flow. A regular increase 
of heat transfer is obvious. It is interesting to note that even for Re = 39,000 
with an increase of turbulence to Tu = 11.5 % two minima appear in the 
heat transfer, the first of which is due to the transition from laminar to 

FIG. 26. Variation of heat transfer around a tube at different levels of turbulence 
[531. Curve 1-Tu = 0.9%, curve 2-Tu = 3%, at Re = 1.1 x lo5, curve 3-Tu = 

11.5%, at Re =3.9 x loJ; curve 4-Tu = 3%. 
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turbulent flow. Thus with an increase in  turbulence of the main flow, at 
lower Reynolds numbers the critical flow regime is established. 

Experiments suggest a nonuniform influence of turbulence along the 
perimeter, which can be described by the following factor 

t+ = NUT~+O/NUT~=O.  (25) 

As seen in Fig. 27, in the subcritical flow regime the dependence of heat 
transfer on turbulence at different Re has a similar character. For higher 
values of Re and Tu, because of the transition to turbulent flow i n  the 
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FIG. 27. Variation of ratio €6 around a tube. Curve 1-Re = 15,600, Tu = 12 "/, 
[56];  curve 2-Re = 67,000, Tu = 2.5 "/: [38]. 

boundary layer, the influence of turbulence is most appreciable at  4 = 110". 
It may be concluded from the results that the critical flow regime is estab- 
lished at 

Re Tu >, 1500. 

The influence of turbulence on heat transfer is least in the rear critical point. 
Dyban and Epick [56] proposed the relation 

c+ = 1 + O . O ~ ( R ~ T U ) ~ . ~  (26) 

for the evaluation of the influence of turbulence on heat transfer from the 
front porlion up to 4 = 60°, which is thought to give high results. This 
would mean that say, for Re = 60,000, with the turbulence level increasing 
from 0.2 to 4%, the heat transfer increases by 30% in the front and 25% 
in the rear of the tube. 
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3 .  Heat Transfer iti the Flow of Viscous Fluids 

The local heat transfer from a circular tube in air flow, transformer oil, 
and water at qw = const. is thoroughly investigated in [38]. I t  is obvious 
from Fig. 28 that for approximately equal Reynolds numbers, the variations 
of local heat transfer coefficient have a similar character in all of the fluids 
examined. The ratio of the heat transfer intensities in the front and in the 

Q 

FIG. 28. Variation of heat transfer around a tube in various liquids [38]. Curve 1- 
Re = 20,000, transformer oil; curve 2-Re = 25,000, and curve 4-Re = 130,000, water; 
curve 3-Re = 39,000, air; Kf’ = Nuf Pr;0.37(Prf/Pr,)-0~25. 

rear is also the same for different fluids, i n  spite of the variation of Pr from 
0.7 to 95. This implies that in the range of Re examined, the physical pro- 
perties of the fluid have no effect on the character of heat transfer. The 
variations of the local heat transfer in different flow regimes show that 
with an increase in Reynolds number and turbulence level the curve of 
heat transfer in the rear portion of the tube undergoes similar changes in 
flows of viscous fluids and in  air. Curve 4, representing variations of local 
heat transfer in water for Re = 130,000 and TU = 2 %  has two minima, 
the first relating to the laminar-turbulent transition in the boundary layer, 
and the second to the separation of the boundary layer. 
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The variations in  the flow pattern around the tube lead to changes of the 
power indexes in Eq. (12). According to [38], the average power index of 
the Reynolds number is 0.5 and 0.73, in the front and in the rear portions, 
respectively (Fig. 29). The power index of the Prandtl number for Pr > 10 
is equal to approximately 0.34 and 0.39, in the front and in the rear, respec- 
tively. 
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FIG. 29. Variation of tu power index of R e  around a tube [38]. 
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FIG. 30. Local heat transfer of the front portion of a tube [38]. 1-Transformer oil; 
2-water; 3--air; K,, = Nu,, Pr,.;0.34(Prr/Pr,)-0.25. 

In  Fig. 30, the experimental points of local heat transfer at the front 
portion of a circular tube are located on a single curve for flows of air, 
water, and transformer oil and may well be generalized by a single relation 

Nuf, = 0.65 Re:;5 Pr:.34(Prf/Prw)0.25. (27) 
I n  this case experimental data were referred to the local velocity from Eq. 

As we see, the local heat transfer is higher for qw = const. than for 
(4). 
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t ,  = const. In heat transfer calculations and in the analysis of experimental 
results, a consideration of surface temperature variation is necessary. 
Different temperature distributions on the wall lead to different values of 
the heat transfer coefficient. Therefore, applying the relations of heat 
transfer for a tube with a constant surface temperature to the case of a 
variable surface temperature will be only approximate, and in the case of 
a considerable surface temperature gradient may be misleading. The influence 
of a temperature gradient is similar to that of a pressure gradient. The sur- 
face temperature gradient determines the temperature distribution in the 
thermal boundary layer and its thickness. The boundary layer thickness 
varies under the influence of a surface temperature gradient, causing cor- 
responding variations of the heat transfer coefficient, which is inversely 
proportional to the thickness of the thermal boundary layer. 

The derivation of a general relation for the local heat transfer of the rear 
portion of a tube is connected with the difficulties of determining the local 
velocity. This problem is very complicated and requires a more detailed 
analysis, which will be the object of our future investigations. The mean 
heat transfer in the rear portion of a circular tube in flows of liquids for 
qw = const. is presented in Fig. 31. Calculations of the mean heat transfer 
from a tube are referred to the velocity in the minimum free cross section 
from Eq. (5a). 

Ref 

FIG. 31. Mean heattransfer of therearportionofatube,K,, = Nu, Pr;o~4(Pr,/Pr,)-0.25. 

B. MEAN HEAT TRANSFER 

If the coefficient of local heat transfer along the perimeter has been deter- 
mined, the mean heat transfer of the tube as a whole can be derived. The 
choice of the method of calculation is of some importance. According to 
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the first of the two known methods, the mean heat transfer coefficient is 
determined by integrating the local heat transfer relation 

Dividing an integral mean heat flux by an integral mean temperature 
difference, 

(29) 
W)Ib 4 w ( x >  dx 

c I =  
( 1  / / )  j h  At(x)  r l x  ' 

is the second calculation method of the mean heat transfer coefficient. 
Calculations by these two different methods may lead to discrepancies in  

the results. The results are identical for isothermal surfaces, but with surface 
temperature variations discrepancies between the two methods do occur. 
For example, the mean heat transfer coefficient, determined from Eq. (28), 
is considerably higher for qw = const. than for t ,  = const., while the mean 
heat transfer determined by the second method from Eq. (29) is approxi- 
mately equal for both cases. 

In theoretical calculations, the first method is more convenient. I n  experi- 
ments, however, the mean heat transfer is usually found by the second 
method. In the case of heat transfer from wires at low Reynolds numbers 
the mean temperature is determined from their electrical resistance. 

1. Low Range of Reynolds Numbers 

At low Reynolds numbers, the heat transfer is affected by free convection, 
while at high values of Reynolds numbers the influence of free convection 
is negligible. The total heat transfer may be determined by adding up the 
vectors of free and forced convection, as proposed in [57],  where the relation 

0.24 Gr"' + 0.41 Gr1I4 
(NU - 0.35) 1 - = 0.5 (30) [ ( N u  - 0.35 

is used for calculations at low Reynolds numbers. For the case of a weak 
influence of free convection it simplifies to 

Nu = 0.35 + 0.5 Re0.5. (31) 
For calculations of heat transfer from wires at  Re < 0.5, when they are 

streamlined, the following relation is proposed [58]  : 

Nu (7',,,/Tf)-0.'7 = l ! ' ( I . l E  - 1 . 1  log Re), (32) 
where T,,, is the arithmetical mean value of the wire temperature and T, is 
the main flow temperature. 
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In connection with developments in  thermoanemometry, a number of 
works have been devoted to the heat transfer of thin wires which are used 
as the working elements in sensors. Specific problems of heat transfer from 
thin wires lie outside the scope of the present study. Recent publications 
[59, 601 in this field can be recommended. 
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FIG. 32. Heat transfer of a tube in flow of air at Re < 10’. 1-After [13]; 2-after [ I ]  
3-after Collis and Williams [%I. 

Figure 32 presents the data of various authors on heat transfer in air at 
low Reynolds numbers. A considerable scatter of the points is obvious, but 
the slope of the curves corresponds to the power index of Reynolds number 
rn = 0.40 at Re < 40 and rn = 0.50 at Re > 40. 

The process of heat transfer in liquids at low Reynolds numbers is similar 
(Fig. 33). The influence of the physical properties of the liquid in this case 

too 10’ 
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FIG. 33. Heat transfer of  a tube in flow of liquids at Re i 10’. I ,  2-Water flow, 
after Piret et a/. [61 J and Davis [ 161, respectively; 3-transformer oil flow, after Zukaiiskas 
[37]; K: = Nu, Pr-0.37(Prr/Pr,)-0.2s. 
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is accounted for by the Prandtl number to the power 0.37. Some authors 
propose n = 0.3. Lower values of n may be expected, but the data available 
are insufficient for any conclusions. 

2. High Rarige of Reynolds Nuntbers 

The preliminary results of the correlation of our experimental data on 
mean heat transfer in flows of air, water, and transformer oil at various 
heat flux directions are presented in Fig. 34. All the experiments were per- 
formed under identical conditions ( t ,  = const., Tu < 1 %) in the same 
experimental apparatus. 

FIG. 34. Influence of the type of liquid on heat transfer of a tube [37]. 1, 3, 5-Heating 
of transformer oil, water, and air, respectively; 2 ,4 ,  5-cooling of above fluids, respectively; 
6 ,  7-experimental data in air flow of Mikhe’yev [I51 and Hughes [2]. 

I t  is obvious that the experimental points for the flow of transformer oil 
and water are higher for heating than for cooling. Thus the relative positions 
of the heat transfer data are determined by fluid type, fluid temperature, 
and heat flux direction. Our data in air flow correlate well with the results 
of other authors [2 ,  151 presented here. Through the experimental points 
two straight lines of different slopes may be drawn, corresponding to different 
values of the power index of Reynolds number. At Re < lo3, m = 0.48 
and i n  the range of Reynolds numbers from lo3 to 2 x lo5, m = 0.61 both 
for liquids and air. 

In  Fig. 35 the final results according to Eq. (12) are presented, together 
with the recent results [38] of investigations of mean heat transfer from a 
circular tube in crossflow of air, water, and transformer oil for qw = const. 
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Ref 

FIG. 35. Heat transfer of a tube at different boundary conditions. 1, 4, 5-Heating 
transformer oil, water, and air, respectively; 2, 3, 5-cooling of above fluids, respectively, 
at f ,  = const. [37]; 6, 7, 8-heating transformer oil, water, and air, respectively, at qw = 
const. [38]. 

FIG. 36. Comparison of heat transfer of a tube data obtained by various authors. 
1-[371; 2-[151; 3-[131; 4-[581; 5-[631; 6-[64]; 7-[2]; 8-16]]; 9-[62]; 10-[16]; 
J 1-[40]. Experimental data in the first row of a staggered bank. 
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Based on an analysis of the experimental results, the power index of the 
Prandtl number n = 0.37 is chosen. As mentioned in Section IV, in  the 
range of Pr > 10 the mean value of n along the perimeter is 0.36. The 
experimental results in Fig. 35 exhibit a good correlation and an unambiguous 
determination of the law of heat transfer. 

The results of mean local heat transfer calculated according to Eq. (29) 
for qw = const. correlate well with the results for t ,  = const. 

3. Relations for Heat Transfer Calculations 

The continuous curve in Fig. 36 represents heat transfer data of a circular 
tube in crossflow with viscous fluids and gases, when the turbulence of the 
main flow is less than 1 ”/,. The curve has been derived from our experimental 
data. Data of other authors, presented for comparison, correlate well with 
our relation. Thus the following equation is recommended for practical 
calculations : 

Nu, = c Refm PrF.37(Pr,/Pr,)0.25. (33) 

The values of c and m at various Reynolds numbers are given in Table I .  

TABLE I 

VALUES OF CONSTANTS IN EQ. (33) 

Re C rn 

1-40 0.75 

40-1 x lo3 0.51 

I x 103-2 x 105 0.26 

2 x 1 0 5 - 1  x 106 0.076 

0.4 

0.5 

0.6 

0.7 

For Pr > 10, n = 0.36 should be chosen. For convenience approximate 
values of m are used in practical calculations. For gases the relation is 
simplified, e.g., for air Pr = 0.7 = const. and Pr0.37(Pr,/Pr,)0.25 = 0.88. 

For Re < 1, the heat transfer in  flows of gases may be calculated from 
Eqs. (30)-(32). In some works [30] relations of the type 

N u  = c, Re0.’ + c2 (34) 

are proposed for the whole range of Reynolds numbers, where the first 
term stands for heat transfer through the laminar boundary layer on the 
front portion, and the second for heat transfer in the rear. It has, however, 
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been shown that the power index of the Prandtl number is not constant 
along the perimeter. Thus for viscous liquids Eq. (34) becomes 

N u ( P ~ , / P ~ , , , ) - ~ . ~ ~  = c1 Re0.5 + c2 Re0.7 (35) 

Solutions of this type of equation are complicated and hardly feasible in 
practice. 

C. HEAT TRANSFER OF A TUBE IN A RESTRICTED CHANNEL 

The influence of channel blockage on the flow pattern was analyzed in 
Section 11. Heat transfer also changes under the influence of the decreased 
free space between the tube and the wall of the channel. According to 
theoretical calculations, the heat transfer on the front portion of a tube 
increases with an increase in blockage ratio. This is confirmed by Fig. 37, 
representing calculations [29] by the method of Merk [47] using the potential 
flow velocity distribution around a tube 

Measurements of local heat transfer on a tube in a channel (Fig. 38) 
suggest that for D / H  > 0.6 the distribution of heat transfer coefficient in 

FIG. 37. Calculated heat transfer data from the front portion of a tube for different 
D / H  [29]. Curve 1-0.83. curve 2-0.75; curve 3 4 . 7 1 ,  curve 4 4 . 5 2 ;  curve 54.39; 
curve W. 
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FIG. 38. Local heat transfer of a tube for different D / H  [29]. Curve 1 4 . 8 3 ;  curve 2- 
0.63; curve 3 4 . 5 2 ;  curve 4-0.39. 

the rear also has a different character. In the region near 4 = 120°, the 
second minimum of heat transfer appears. 

The curves and the plot correspond to Re = 50,000, referred to the 
velocity of the main flow of air. The influence of blockage ratio on mean 
heat transfer is taken into account when choosing the reference velocity. 
In calculations of the mean velocity for the case D/H -= 0.8, Eq. (5c) may 
be applied. But for higher blockage ratios its influence on the heat transfer 
is different in the front and in the rear. Therefore, Akilba’yev [29] suggests 
Eq. (35) for heat transfer calculations at D / H  > 0.8, with separate empirical 
corrections for the front and the rear of a tube. 

VI. Heat Transfer of a Tube in a Bank 

A. LOCAL HEAT TRANSFER 

1. Heat Transfer in Flow of Gas 

The variation of heat transfer around a tube in a bank is determined by 
the flow pattern, which depends greatly on the arrangement of the tubes 
in the bank. Thus in banks of in-line arrangement, two impact points and 
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consequently two heat transfer maxima are observed. On the other hand, 
in banks of a staggered arrangement, the process of heat transfer is to some 
extent similar to that of a single tube. 

As mentioned above, a tube in one of the inner rows is influenced by a 
highly turbulent flow, and the boundary layer near the impact point is 
purely laminar only at low Reynolds numbers. 

Heat transfer variations in inner rows of banks of in-line and staggered 
arrangements are compared with that of a single tube in Fig. 39. In banks 

I 
3 

FIG, 39. Variation of local heat transfer of a single tube and a tube in a bank. Curve 
I-single tube; curve 2-in an in-line bank; curve 3-in a staggered bank. 

of both arrangements a higher turbulence intensity in the flow causes an 
increase in the heat transfer at the front as well as the rear portions of a 
tube. Nevertheless, the maximum value of the heat transfer in the case of 
an in-line bank is observed at Cp = 50" because the impact of the stream on 
the surface occurs at this point. 

Let us consider the heat transfer in different rows of a staggered bank 
(Fig. 40). The heat transfer from a tube in the first row is similar to that of 
a single tube. As the fluid passes through the first row, it is disturbed. This 
causes an increase in heat transfer in subsequent rows. This is observed up 
to the third row, downstream of which the heat transfer becomes stable 
and equal to the value of the latter. This applies to the front and rear portions 
of the tube [65].  
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FIG. 40. Local heat transfer of a tube in a staggered bank, 2.0 x 2.0, at Re = 14,000 
[65]. Curves I ,  2, 3-first, second, and inner row, respectively. 

In  banks with a staggered arrangement, a change of longitudinal and 
transverse pitches from 1.3 to 2.0 has hardly any effect on the character of 
heat transfer (Fig. 41). An increase in heat transfer is observed at about 

0 60 120 I80 
9 

FIG. 41. Local heat transfer of a tube in various staggered banks at Re c 70,000. 
Curve 1-20 x 2.0, aftcr Mikhaylov [65] and Karakevich [66]; curve 2-1.5 x 1.5, after 
Mayinger and Schad [67]; curve 3-1.3 \ 1.13, after Bortoli el at. [68]; curve 4-1.5 x 
2.0, after Winding and Cheney [69]. 
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4 = 120" in the banks examined, which corresponds to the laminar-tur- 
bulent transition in the boundary layer. Boundary layer separation occurs 
at  4 = 150". 

The variation of heat transfer around a tube in a staggered bank is almost 
independent of Reynolds number in the subcritical flow regime. I n  closely 
spaced staggered banks, the heat transfer of the inner tubes decreases in 
the front up to 4 = 50", and later increases again. This is explained by large 
pressure gradients and subsequent velocity increases. 

cp 

FIG. 42. Local heat transfer of a tube in an in-line bank, 2.0 x 2.0, at Re = 14,000 
[65]. Curves 1, 2, 3-first, second, and inner row, respectively. 

Figure 42 presents heat transfer variations in an in-line bank after [65]. 
The heat transfer is stable from the fourth row on. Tubes of the second 
and subsequent rows are "shaded" by the preceding ones with the character 
of heat transfer changing accordingly. Because of the two impact points, 
expressed by sharp maxima of heat transfer, the laminar boundary layer on 
an inner tube begins at I$ = 40-60", instead of the front stagnation point. 
With subsequent growth of the boundary layer in both directions from the 
impact points, the heat transfer decreases. 

It is interesting to note that the heat transfer at the front stagnation point 
of the inner tubes increases from row to row, and approaches the maximum 
heat transfer at the impact point. This is connected with the increase of 
flow turbulence in the bank. This also leads to more intensive heat transfer 
in the rear. Heat transfer in the rear constitutes a significant part of the 
total heat transfer, which means that flow in the rear is not stagnant. 
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FIG. 43. Local heat transfer of a tube in various in-line banks at Re = 30,000. Curve 
1-1.5 x 1.5, after Mayinger and Schad [67]; curve 2-1.6 x 2.0, after Kazakevich 
[66]; curve 3-1.5 x 1 .1 ,  after Mayinger and Schad [67]. 

With an increase of Reynolds number, the flow in the bank becomes 
more turbulent, and the distribution of local heat transfer coefficients on 
tubes in inner rows levels out. This is confirmed by Fig. 43, comparing the 
results of various authors, where tube arrangement has little effect on the 
character of heat transfer. 

2. Heat Transfer in Flow of Viscous Fluid 

The physical properties of the fluid have no effect on the character of the 
heat transfer, the distribution of the local heat transfer coefficient being the 
same in all fluids. This is seen from Fig. 44 which represents data of local 

(P 

FIG. 44. Local heat transfer of tubes in an in-line bank in flow of liquids. Curve I-  
2.6 x 1.3, water, Re = 6000; curve 2-2.6 x 1.3. transformer oil, Re = 360; curve 3- 
1.3 x 1.3, transformer oil, Re = 240. 
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heat transfer of inner tubes in banks of in-line arrangements in flows of 
water and transformer oil [20]. A certain effect of the pitch, both longitudinal 
and transverse, is obvious. 

The determination of the power index m of the Reynolds number has 
been attempted from local values of heat transfer and velocity. In the region 
from the impact point to the separation point m = 0.5 was obtained. In 
the rest of the perimeter, m varies from 0.5 to 0.8, which implies a different 
flow regime at the surface. Thus one may judge the flow pattern from the 
local values of m. 

B. MEAN HEAT TRANSFER 

For practical purposes, the power index of the Prandtl number n = 0.36 
is sufficiently accurate for all sorts of banks (see Section IV). Thus the 
following relation may be applied for heat transfer from banks 

Nu, = c Refm Pr:.36(Pr,/Prw)0.25. (36) 

The results are referred to the tube diameter and to the flow velocity in the 
minimum free cross section. 

The final results for the mean heat transfer in the form of 

K, = Nu, Pr;0~36(Prf/Prw)-0.25 = f(Re,) (37) 

are presented in the following figures. 

1 .  Heat Transfer in Separate Rows [20] 

Experiments suggest that the heat transfer from a tube is determined by 
its position in the bank. In most cases, the heat transfer from tubes in the 
first row is considerably lower than in inner rows (Figs. 45 and 46). 

In the range of low Reynolds numbers, the heat transfer from a tube in 
the first row is similar to that of a single tube or a tube in an inner row. 
The increase of flow turbulence in a bank at higher Reynolds numbers 
leads to an increase of heat transfer of the inner tubes, as compared to the 
first row. The rows of tubes in a bank in fact act as a turbulence grid. In 
most banks, the heat transfer becomes stable from the third or fourth row 
in the mixed flow regime. A comparison of heat transfer between the first 
row and inner rows in a fully developed flow reveals the influence of tur- 
bulence intensity on heat transfer. 

The heat transfer of inner tubes generally increases as the longitudinal 
pitch decreases. This correlates well with known investigations of the heat 
transfer of a tube placed at various distances from the turbulence grid. 
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FIG. 45. Heat transfer of tubes of in-line banks, 1.6 x 2.0. 1-First row, and 2, 3, 
4-inner rows in water, air. and transformer oil, respectively. 
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FIG. 46. Heat transfer of tubes of staggered banks, 2.6 x 1.3 .  I-First row, and 
2, 3, 4-inner rows in water, air, and transformer oil, respectively. 
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As a result of turbulence, the heat transfer in inner tubes exceeds by 30 
to 70% that of the first row, the difference depending on the longitudinal 
pitch. Thus heat transfer in inner rows is mainly determined by turbulence 
intensity, which increases with a decrease in the distance from the turbulizer, 
i.e., from the preceding row. 

The dependence of the heat transfer variation in a bank on Reynolds 
number may be of interest. The development of flow turbulence in a bank 
is different for different values of Reynolds number. As is obvious from 
Fig. 47, in a staggered bank the heat transfer of a tube in the second row is 

FIG. 47. Heat transfer of tubes of staggered banks, 1.3 x 1.3. I-Second row; 2, 3- 
inner rows. 

somewhat lower than that of an inner tube for Re < lo4, and equal for 
Re > lo4. The same applies to banks with in-line arrangements. The heat 
transfer of a tube in the second row is in most cases 10 to 25% lower than 
that of inner tubes. 

The following discussion deals mainly with the heat transfer of a tube in 
an inner row of a bank. 

2 .  Heat Transfer in a Range of Low Reynolds Numbers 

As noted in Section 111, at low Reynolds numbers laminar flow patterns 
prevail with large vortices in the circulation zones. This is also reflected in 
the character of the heat transfer. The influence of free convection is observed, 
in some cases, but is not usually taken into account in  calculation formulas. 
Available experimental data for the heat transfer of banks of tubes for low 
Reynolds numbers is rather scarce [70-731. 
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Transition of the predominantly laminar flow to a mixed flow usually 
takes place at Re = 200. In some banks, however, especially in those with 
a large longitudinal and small transverse pitch, transition occurs at Re = lo3. 
A certain influence of initial turbulence in the main flow preceding the bank 
is possible. 

Data of different authors [72-741 on the heat transfer in banks with in- 
line arrangements for low Reynolds numbers (Fig. 48) suggest that in some 
banks, with decreasing Reynolds number the heat transfer coefficient 
becomes proportional to the velocity to the power 0.5 at Re < lo3 or even 
0.4 at Re < 2 x 10’. In some banks the mixed flow pattern persists at 
lower Reynolds numbers, and the heat transfer coefficient is proportional 
to the velocity to the power 0.6 or 0.63. 

FIG. 48. Heat transfer of tubes of in-line banks: 2.6 x 1.3 and 1.3 x 2.6, after 
Makarevitius and Zukauskas [74]; 1.25 x 1.25 and 1.5 x 1.5, after Bergelin et a/. [72]; 
2.0 x 2.0, after Isachenko [731. 1-Heat transfer of a single tube; 2, 3, 4-data in flow of 
transformer oil, water, and air, respectively. 

For 10’ < Re < lo3 the heat transfer of inner tubes of in-line banks 
with large and moderate longitudinal pitch is close to that of a single tube. 
In banks with in-line arrangements an additional effect of “shading” is 
observed with a decrease of the longitudinal pitch. Thus in a predominantly 
laminar flow, the heat transfer of an inner tube is lower than that of a single 
tube. 
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FIG. 49. Heat transfer of tubes of staggered banks: upper-after Bergelin e? 01. [72 ] ;  
lower-after Zukauskas and SlanEiauskas [75]. 1-Heat transfer of a single tube. 

The heat transfer of tubes in a staggered arrangement is similar at low 
Reynolds numbers (Fig. 49). Heat transfer curves of inner tubes of staggered 
banks are, however, higher than that of a single tube. In the range of Re 
from 10 to 100 the heat transfer from inner tubes is close to 

Nu, = c Pr~~36(Pr,/Pr,)0.25, (38) 

where for banks with an in-line arrangement c = 0.8 and for staggered 
banks c = 0.9. 

3.  Heat Transfer in the Mixed (Suhrritical) Flow Regime 

This regime covers Re from lo3 to 2 x 10’. Transition of the pre- 
dominantly laminar to the mixed flow takes place at different Reynolds 
numbers, depending on the tube arrangements (Figs. 48 and 49). For 
Re > lo3 a laminar boundary layer forms on the front of an inner tube, 
but the main portion of it  is influenced by vortical flow. The character of 
the heat transfer is determined by the flow regime in the boundary layer. 
Thus the power index m of the Reynolds number varies from 0.55 to 0.73 
for banks of different arrangements. 

Figure 50 shows a comparison of the heat transfer from 15 various banks 
of in-line arrangements [74]. I t  suggests an increase of m with constant 
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FIG. 50. Comparison of heat transfer of various in-line banks [74]. 

longitudinal and decreasing transverse pitch. In fact, the value of m is 
influenced by changes in  the ratio of longitudinal and transverse pitches 
(Fig. 51). 

0.66 

0.64 

E 
0.60 

0.56 
a-1  

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
b-1 

FIG. 51. The value of HI, the power index of Re, in banks of in-line arrangement, as a 
function of the pitches. 
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In the mixed flow regime m = 0.63 is acceptable for most banks of in- 
line arrangement. The mean heat transfer of an  inner tube is calculated 
from 

Nu, = 0.27 Rep.63 Prp.36(Pr,'Pr,)0.25. (39) 
In banks with aih < 0.7, experimental heat transfer measurements are 
much lower than those calculated according to Eq. (39). Banks of this type 
are considered ineffective as heat exchangers. 

Final experimental results of the heat transfer of different staggered banks 
in flows of viscous fluids [75] are presented in Fig. 52. The power index of 
Re is equal to 0.60 for all banks. 
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FIG. 52. Comparison of heat transfer of various staggered banks [71] 

The effect of pitch is clear. Heat transfer increases with a decrease in the 
longitudinal pitch and, to a lesser extent, with an increase of the transverse 
pitch. The variation of c may be evaluated by the geometrical parameter 
a,'b to the power 0.2 for a/b < 2. For u,'b > 2, c = 0.40. In  such banks the 
minimum free section is diagonal with respect to the main flow. Thus 
changes i n  c involve certain changes in the conditions of flow through a 
bank. The generalized formulas for heat transfer of inner tubes in various 
staggered banks are 

for a,'h < 2 

and for aih > 2 
Nu, = 0 . 3 5 ( ~ , ' h ) ~ . ~  Rep.('o PrP.36(Prf 'Prw)0.25, (40) 

Nu, = 0.40 PrP.36(Prf.IPr,)0.2s. (41) 
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4. Heat Transfer in the Criticul Flow Reginze 

At Re > 2 x lo5, the critical regime in the flow past a single tube and 
a tube in a bank is established. Here the flow through a bank becomes 
increasingly turbulent, and the total heat transfer of the inner tubes increases 
sharply. 

Investigations of heat transfer in the critical regime by StasiuleviEius ef al. 
[76] are most comprehensive, so let us consider some of their results. Figures 
53 and 54 present the heat transfer in inner rows of in-line and staggered 
banks in a crossflow of air. In  the subcritical regime, the results of [76] 
correlate well with the results of heat transfer in banks of tubes in flows of 
air and liquids [74, 751 considered above. 

Ref 

FIG. 53. Heat transfer of in-line banks at high Reynolds numbers [76]. 

The critical regime in the staggered and in-line banks examined is obvious 
at Re > 2 x lo5, expressed by the increase of the power index ni from 
0.6 to 0.8--0.9. The results of Haniniecke ct al. [77] are similar. The power 
index i n  of the Reynolds number in  many banks exceeds 0.80, which corres- 
ponds to the power index i n  the relation for heat transfer in the turbulent 
boundary layer formed on the front portion of the tube. This means that 
with an increase of Reynolds number, the heat transfer increase in the 
rear portion ofa tube is much faster than on a plate with a turbulent boundary 
layer. The rate of heat transfer increase in the rear is somewhat similar to 
that of heat transfer increase on a plate in the transition from laminar to 
turbulent flow. Therefore i t  should be supposed that in the critical regime 
the value of the power index I H  is not only influenced by the tube arrange- 
ment, but also by surface roughness, temperature difference, and the value 
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of Pr. From this point of view, measurements of the interaction of velocity 
and temperature fields in the boundary layer of a tube would be of interest, 
similar to measurements on a plate [78]. The mean value of m = 0.84 may 
be chosen in the critical regime for all banks. 

FIG. 54. Heat transfer of staggered banks a t  high Reynolds numbers [76]. 1-Fifth, 
and 2-first rows of a bank, 1.2 x 0.9; 3-fifth, and 4-first rows of a bank, 2.5 x 1.3. 

As is seen from Fig. 54, with an increase of Re, the heat transfer of an 
inner row increases more, as compared to the first row. 

The influence of pitch on heat transfer in  the critical regime is similar to 
that in the subcritical regime. The heat transfer of all staggered banks with 
widely spaced tubes, i.e., with large a/h ratio is more intensive, but never 
differs from others by more than 25 %. 

Similar results are obtained for in-line banks. Heat transfer is most inten- 
sive in those banks with large transverse and small longitudinal pitch. The 
heat transfer intensity of most in-line banks, with the exception of some 
closely spaced banks, is the same. The heat transfer from tubes i n  inner 
rows of in-line banks can be calculated from 

Nuf = 0.021 Rep.84 Pr0.36(Prf;’Pr,)0.25. f (42) 

The following relations are recommend for calculating heat transfered 
from tubes in inner rows of staggered banks: 
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for Pr > 1 
Nu, = 0.022 Rep.84 Prp.36(Pr,/Pr,)0.25, (43) 

and for Pr = 0.7 
Nu, = 0.019 Rep.84. (44) 

5. Hcat Transfer of Closely Spaced Boriks 

In the previous cases of heat transfer of banks of tubes, the results were 
referred to the velocity in the min imum free cross section from Eq. (7) ,  
i.e., to the maximum velocity. I n  fact, heat transfer is determined not by 
the maximum velocity, but by the average velocity, integrated over the 
perimeter of the tube. In wider spaced banks, the average velocity scarcely 
differs from the maximum and the acceptance of the latter is justified by 
the simpler calculation. But when the free cross section is small, the maximum 
velocity exerts its influence only on a small portion of the surface. 

Investigations of heat transfer [79] in staggered and in-line banks, with 
clearance between tubes from 0.5 to 4 mm, revealed that the heat transfer 
curves for separate banks referred to the maximum velocity differ from each 
other, and their general level is lower than the actual heat transfer. Thus, 
for closely spaced banks, the results should be referred to the average 
velocity given by Eq. (81. Such results for various closely spaced banks 
correlate satisfactorily (Fig. 55). 

FIG. 5 5 .  Heat transfer o f  closely spaced in-line hanks [79] 

6. Conaparisow of t / ic  Results 

Our equations (38)-(44) concerning the heat transfer in different banks 
with various fluids actually describe the results of investigations of 49 banks 
of different arrangements at Re from 20 to 2 x 10' and Pr from 0.7 to 500. 
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These investigations have been performed at the Institute of Physico- 
Technical Problems of Energetics, Lithuanian Academy of Sciences. Our 
relationship for heat transfer, denoted by the continuous line, is compared 
with the results of other authors for in-line and staggered banks in Figs. 
56 and 57, respectively. The results correlate well in the whole range of Re 
examined. 

Ref 

FIG. 56. Comparison of heat transfer of in-line banks. Curve 1-1.25 x 1.25, and 
curve 2-1.5 x 1.5, after Bergelin et id. [72]; curve 3-1.25 x 1.25, after Kays and London 
[18]; curve 4-1.45 x 1.45, after Kuznetsov and Turilin [39]; curve 5-1.3 x 1.5, after 
Lyapin [80]; curve 6-2.0 x 2.0, after Isachenko [73]; curve 7-1.9 x 1.9, after Grimison 
[9]; curve 8-2.4 X 2.4, after Kuznetson and Turilin [39]; curve 9-2.1 x 1.4, after 
Hammecke ef a/. [77]. 

The results of heat transfer in staggered banks are compared with those 
in in-line banks, using the experimental data of square in-line banks [20]. 
For the case of the staggered arrangement, this bank was turned by 45". 
Figure 58 shows that at  low Reynolds numbers the heat transfer of in-line 
banks is considerably lower than that of staggered banks. With an increase 
of Reynolds number, the heat transfer of in-line banks increases more 
rapidly and at high Re it approaches the heat transfer intensity of staggered 
banks. However, i t  should be mentioned that the efficiency of banks depends 
not only on heat transfer intensity but also on hydraulic resistance. 



Ref 

FIG. 57. Comparison of heat transfer of staggered banks. Curve 1-1.5 x 1.3, after 
Bergelin et a / .  [72]; curve 2-1.5 x 1.5 and 2.0 x 2.0, after Grimison [9], and Isachenko 
[73]; curve 3-2.0 x 2.0, after Antuf’yev and Beletsky [17], and Kuznetsov and Turilin 
[39], and Kazakevich [66]; curve 4-1.3 x 1.5, after Lyapin (801; curve 5-1.6 x 1.4, 
after Dwyer and Sheeman @I];  curve 6-2.1 x 1.4, after Hammecke et a/. [77]. 

FIG. 58. Comparison of heat transfer of in-line and staggered banks. Curve l-in- 
line; curve 2-staggered with a/b z 2. 
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VII. Hydraulic Resistance of Ranks 

A. RESISTANCE CALCULATION METHODS 

Hydraulic resistance is one of the most important characteristics of heat 
exchangers and is characterized by the total pressure drop in flow across 
banks of tubes. As is known, the total pressure drop across a bank is a 
function of flow velocity, bank arrangement, and the physical properties 
of the fluid. The resistance of a bank with viscous fluids of constant density 
is expressed by the following functional relation 

A/) = f(4 J'1 > s2 2 D, =, P ,  P I .  
The dimensionless form of this relation will be 

Eu = $(Re, s , / D ,  s , /D,  1) 

o r  the exponential form 

(45) 

Eu = k Re'z. (47) 
In  generalizations of experimental results and in calculations according 

to Eq. (47) the choice of reference velocity and number of rows to which 
pressure drop is related is of considerable importance. The use of average 
velocity, calculated along the perimeter from the front stagnation point 
to 4 = 90°, as a reference is most suitable. This allows the comparison 
of the hydraulic resistance of various types of banks. 

In banks with a > 1.25 the average value of the velocity is closer to the 
maximum, and here the latter is more convenient. In closely spaced banks 
with a < 1.25, the average value of the velocity is of the order of the main 
flow velocity, and here the latter may be used as reference. 

For the generalization of experimental data, the maximum velocity is 
more acceptable as a reference, and it was used in the calculations below. 
It reflects the actual resistance with sufficient accuracy, except for closely 
spaced banks. 

Experiment suggests that the pressure drop across banks is proportional 
to the number of rows and is determined by the tube arrangement. With a 
decreasing number of rows, the entrance and exit conditions in the bank 
contribute more to the total loss of kinetic energy. This must be taken into 
account in  calculations for banks with a small number of rows. However, 
in experiments, banks with many rows are usually used. The results of 
hydraulic resistance are represented by the number E u  referred to one row 
or  to a bank of ten rows. 
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B. MEAN RESISTANCE OF BANKS 

Let us consider now the resistance of banks as dependent on the tube 
arrangement and  Reynolds number. Our measurements of the pressure 
drop across 49 different banks in flows of air and liquids [20, 821 suggest 
that resistance is mainly determined by the transverse pitch a,  and increases 
with a decrease of the latter. This applies both to staggered and in-line 
banks. With the longitudinal pitch h increasing, the larger space between 
two neighboring rows permits the formation of vortices which in many 
cases affects the resistance of the bank. The dependence of resistance on 
Re in a predominantly laminar flow has a different character than in a 
mixed flow. 

1. Predominantly Laminar Floirx 

Viscous, forces prevail in the resistance of in-line banks at Re < lo3,  and 
the power index of Re is equal to -0.5. I n  this range the resistance of 
staggered banks is determined mainly by the value of the minimum free 
cross section and increases with a decrease of the latter (Fig. 59). 

1 oo 

3 
W 

Id’ 

to4 105 
Re 

FIG. 59. Hydraulic resistance of staggered banks [20, 721. 1-Transformer oil; 2- 
water; 3-air. 

The figure presents generalized results of the resistance of several stag- 
gered banks, related to  one row according to Eq. (47). The variation of 
resistance of in-line banks is similar. The relative resistance of in-line banks 
is, however, somewhat lower than that of staggered banks. 
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2. Mixtw’ Floit’ 

Data on hydraulic resistance (Fig. 59) show that the transition of the 
predominantly laminar to the mixed flow occurs at Re = lo3 in staggered 
banks, and at lower Re in banks in which the minimum free cross section 
s; is found along the diagonal (Fig. 10). After the transition and with a 
further increase of Re to 2 x lo’, curves in  the figure fall more gradually. 

An increase of the longitudinal pitch leads to an increase of the resistance, 
the latter being influenced mainly by the space between the tubes in the bank. 
A decrease of the longitudinal pitch involves a decrease of the free cross 
section, and the effect of tube arrangement on resistance i n  such banks is 
reflected only in the value of the pitch along a diagonal. This applies for 
banks with a < 2. 

The flow pattern in  staggered banks with n > 2 is to some extent similar 
to that of in-line banks. 

In most in-line banks, the transition of the predominantly laminar to the 
mixed flow also takes place at  Re = lo3. I n  banks of large longitudinal 
pitch h > 1.70, and Eu becomes essentially independent of Reynolds num- 
ber. In this case, the resistance of a bank is determined solely by the transverse 
pitch. In banks with h < 1.5, the pressure drop coefficient depends on Re, 
and is influenced by the longitudinal pitch. 

3. Critical Flow 

Let us first consider the results on the flow resistance i n  the transition to 
the critical regime as a function of the number of rows in a bank. 

Experiments on staggered banks in air flows [82] suggest, as might be 
expected, that the resistance of a single row is similar to that of a single 
tube. I t  decreases at the critical Reynolds numbers and increases a little 
with a further increase of Re (Fig. 60). The pressure drop coefficient of a 
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4 6 8 1 0 5  2 4 6 8 lo6 2 
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FIG. 60. Hydraulic resistance of a staggered bank, 1.5 r. 1.04, referred to one row. 
Figures denote the total number of rows [82]. 
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staggered bank with many rows also decreases with an increase of Re, and 
at Re > 2 x lo5 it becomes independent of Reynolds number. As can be 
seen, the character of the resistance of a bank differs slightly from that of 
a single row, the effect of the turbulence generated by preceding rows 
causing the difference. 

In Fig. 61 the resistance characteristics of staggered banks with many 
rows are presented. Transition to  the critical regime is noted at  Re > 2 x lo5 
in all the banks. 
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FIG. 61. Hydraulic resistance of staggered banks [82]. 

The resistance of banks is influenced also by the amount of free space 
between the tubes i n  a bank. Closely spaced banks with a staggered arrange- 
ment can be imagined as a nuniber of obstacles, periodically narrowing and 
widening the channel, which leads to the disturbance of the flow. Thus for 
banks with a'h < I .7, the automodel character of the pressure drop variation 
with Eu = const. and independent of Re begins abruptly. In wider spaced 
banks with a h  > 1.7 the flow across banks can be stable only at high 
Reynolds numbers. 

2 

3 16' 

6 

4 
lo4 2 4 6 8 10' 2 4 6 8 10' 2 

Re 

Fic;. 6 2 .  Hydraulic resistance of in-line banks [76]. 

Figure 62 presents data on the pressure drop of in-line banks with a 
crossflow of air. I t  is obvious that in the closely spaced bank, 1.3 x 1.3, 
and banks with a large longitudinal pitch the automodel character of the 
pressure drop variation is established at Re = 2 x lo5. In banks of large 
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transverse and small longitudinal pitch, 2.5 x I .3, the automodel character 
of the pressure drop variation never occurs in  the range of Re examined. 
Apparently banks of this type are not capable of turbulizing the flow suffi- 
ciently and the automodel character of the pressure drop is established at 
even higher Reynolds numbers. 

In predominantly turbulent flow, the pressure drop across banks of in- 
line arrangement with large transverse and small longitudinal pitches is less. 
The largest pressure drop is observed, of course, across banks with closely 
spaced tubes. 

c. PROPOSALS FOR CALCULATIONS OF HYDRAULIC RESISTANCE 

As suggested by the analysis of experimental results, for simplicity of 
calculation a graphical interpretation of the data is most convenient. General 
graphs have been compiled from our results described previously, including 
the results of other authors on the pressure drop across banks in flows of 
gases and liquids. A satisfactory correlation has been achieved. 

The general graphs of in-line banks are based on the resistance of banks 
of square arrangements, with the reference distance being the longitudinal 
pitch. Graphic corrections have been introduced for other banks to account 
for different pitches and Reynolds numbers. 

FIG. 63.  Pressure drop coefficient of in-line banks as referred to the relative longitudinal 
pitch b. 
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Pressure drop coefficients of staggered banks ds referred to the relative trans- 

The graphs of staggered banks are based on the equilateral-triangular 
arrangement with corrections for the evaluation of different arrangements 
and Re. 

The graphs of the pressure drop coefficient as a function of Re for in-line 
and staggered banks are presented in  Figs. 63 and 64, calculated for one 
row of a bank. Comparison of the pressure drop across staggered and in- 
line banks suggests that in  the transition region from the predominantly 
laminar to the mixed flow, the banks of in-line arrangement exhibit a con- 
siderably lower pressure drop coefficient which must be ascribed to the 
structure of the turbulent flow i n  the rear portions of tubes due to different 
pitches. 

With increasing Reynolds number, the flow in a bank becomes increasingly 
turbulent, and the pressure drop across in-line and staggered banks becomes 
equal. 

VIII. Calculation of Banks of Tubes in Crossflow 

The preceding sections were devoted to the heat transfer of tubes in banks 
and the hydraulic resistance of banks. The main factors exerting an influence 
on the heat transfer process were analyzed. Calculation formulas were 
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proposed, reflecting the general characteristics of the heat transfer of tubes 
in crossflow. The derivation of various equations and charts for various 
cases of tubes in crossflow are out of the scope of this paper. Equations and 
charts for all practical cases can be easily derived from the graphs presented 
here. Thus Fig. 55 may be used for heat transfer calculations in  closely 
spaced banks. 

For gases, the formulas are simplified; say, for air Pr = 0.7 = const. 
and Pr~.36(Pr,/Pr,)0~25 = 0.88. Multiplication of the constants in the for- 
mulas by 0.88 gives simplified formulas for banks in air at moderate tem- 
perature differences. Thus for Re > lo3 the heat transfer of a tube of an 
in-line bank is determined by the relation 

Nu, = 0.27 . 0.88 = 0.24 Re:.63. (48) 

The author is not concerned with the processes of convective heat transfer 
at  high temperatures of gases and in the presence of chemical reactions in  
the boundary layer, and the formulas cannot be applied for these conditions. 

In Section VI formulas were proposed for the calculations of heat transfer 
of the inner tubes or banks of many rows. If the number of rows is small, 
one should take into account the lower heat transfer intensity of the first 
rows. In banks of less than 20 rows, the difference between the heat transfer 
of the first row and the inner rows is evaluated by the factor c z ,  relating to 
the corresponding Nusselt numbers 

NuZ = cz  NU;^^^. (49) 

The values of cz are presented in  Fig. 65 as a function of number of rows. 
The formulas apply only if the flow is perpendicular to the tube axis. 

At attack angles Ic/ < 90”, the heat transfer decreases, and is determined 
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FIG. 65. 
2-staggered. 

Correction for the number of rows in the heat transfer calculation. 1-In-line: 
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by the n>ultiplication of the heat transfer coefficient by the correction factor 
depending on the angle 

c* = C(*/M+,. 

The values of the correction factor are given in Fig. 66 for different angles 
of attack. At I) = 0, we are dealing with the case of longitudinal flow past 
a bank of tubes. 

4J 
FIG. 66. Dependence of heat transfer of banks on the angle of attack. 

The optimal arrangement of tubes is one of the main problems in the 
construction of heat exchangers. The choice in each case is connected with 
the amount of investment and operation cost which makes the knowledge 
of the power characteristics of heat exchangers so important. 

The efficiency of heat exchangers from the energy point of view is char- 
acterized by the ratio of the amount of heat transferred through a definite 
surface to the energy consumed to overcome the hydraulic resistance. This 
problem can be solved using the data for heat transfer and hydraulic resis- 
tance. 

An efficiency comparison of in-line and staggered banks reveals that for 
Re from 5 x lo2 to 5 x lo4 the in-line banks are more efficient. In  spite 
of the fact that the heat transfer of in-line banks is lower in this range of 
Re, their efficiency is increased by the lower hydraulic resistance. At higher 
Reynolds number, the efficiency of banks of different types becomes com- 
parable, being mainly determined by the pitch. 

The efficiency of the process of heat transfer in a tube bank reflects its 
efficacy from an energy point of view. A decrease of velocity leads to higher 
efficiency, and from an energy point of view, heat transfer seems more 
effective at low velocities. But in this case the heated surface increases 
correspondingly, and only a complex solution of capital investment and 
operating costs leads to the optimal results for each specific case. 

The problems of optimal arrangements and the calculations of heat 
exchangers have been analyzed in a number of special publications [17-19,831. 



I58 A. ZUKAUSKAS 

NOMENCLATURE 

relative transverse pitch, s, /D 
relative longitudinal pitch, s z / D  
drag coefficient, Dr/(pic02 DL/2) 
constant 
specific heat a t  constant pressure, 
J / k G  C 
diameter of tube, m 
total drag of tube, N 
heat transfer surface, m 2  
frequency, H z  
acceleration of gravity, mjsec' 
height, m 
complex dimensionless terms, 
Nu, Prf-0.36 (Prr/Pr,)-0.25 
length, n~ 
power index of R e  
power index, Eq. (14) 
power index of Pr 
pressure coefficient. Eqs. (3)  and 

pressure, N/m2 
static pressure, N/mZ 
pressure drop, N/m2 
specific heat flux, W/mZ 
radius of tube, m 
power index of Re, Eq. (47) 
transverse pitch of bank of tubes, 

longitudinal pitch of bank of 

diagonal pitch of staggered bank, 

temperature, C 
fluid flow velocity, nl/scc 

(6) 

m 

tubes, m 

in 

V 

X 

V 

a 

P 
5 

h 

!J 
V 

P 
T 

4% (P 

$ 
x 
G r  
Nu 
Nu(x)  
P r  
Re 
Eu 
Sh  
T ti 

normal component of velocity, 

distance measured from front 

distance measured normal to 

number of tube rows in bank 
heat transfer coefficient, W/mZ 'C 
coefficient of expansion 
pressure drop coefficient, 2 . l p /  

thermal conductivity, W / m T  
dynamic viscosity, Nsec/m2 
kinematic viscosity, m2/sec 
density, kg/m3 
shear stress, N/m2 
angle measured from front stag- 

the angle of attack, deg 
coefficient, Figs. 63 and 64 
Grashof number, (gL3/v2)/3 11 
Nusselt number, ad/X 
local Ntisselt number 
Prandtl number, cpp /h  
Reynolds number, icOd/v 

Euler number, l p / p r t o  
Strotihal number, @/tio 

turbulence intensity, 1 5 

mjsec 

stagnation point, m 

wall, in 

pu2z 

nation point, deg 

S u HSC RIPTS 

n' conditions on the wall 
m mean value 
x ,  4 local conditions 

0 conditions of the main flo~v 
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I. Introduction 

Over the past years convection phenomena induced by body forces have 
been the object of extensive research efforts. A rather broad classification 
into two types of problems can be made: the external problem such as the 
flow and heat transfer from a heated rod or plate to a fluid a t  rest, and the 
internal problem such as the flow and heat transfer between parallel plates 
or in fluid-filled cavities. 

Thus far, external problems have received a great deal of attention while 
relatively little has been done about internal ones. The reason for this is not 
the greater importance of the external problem but rather that internal 
natural convection problems are considerably more complex. For large 
Rayleigh numbers (product of Prandtl and Grashof numbers) convection 
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effects are important and for external problems Prandtl boundary layer 
theory yields the same simplifications that are so helpful in other problems; 
the region exterior to the boundary layer can be assumed to be unaffected 
by the boundary layer. For confined natural convection problems, on the 
other hand, a boundary layer will exist near the walls but the region exterior 
t o  it will be enclosed by the boundary layer and will form a core region. 
Because this core is encircled by the boundary layer it cannot be considered 
to be independent of it. Hence, the boundary layer and core are closely 
coupled to  each other and this coupling constitutes the main source of diffi- 
culty in obtaining analytic solutions to internal problems. 

A. REVIEW OF EXISTING W O R K  

Most of the early work on internal flows with body forces was of an  
experimental or semiempirical nature and was presented by Elenbaas [l-31. 
The second phase of work (not chronological but i n  order of complexity) 
on  such problems consists of a number of analyses of fully-developed flows 
between vertical parallel plates or in tubes and started with the work of 
Ostrach [4]. This work is extensively reviewed by Ostrach [ 5 ]  and it indicated 
a number of new and  interesting results. For example, it showed that viscous 
dissipation could be important and  that it would act like heat sources in the 
fluid; also it could lead to a second state of  flow and heat transfer. Further, 
it was found that thermal instabilities could be encountered in such con- 
figurations when the heating was from below. These studies of fully-developed 
flows are applicable to configurations in which the length in  the direction of 
the body force is large compared to the width or radius. To simulate com- 
pletely enclosed regions, the condition of no net mass flow was added, but 
no information is obtained in this way about the flow and  heat transfer 
near the ends. None of the aforementioned difficulties were encountered in 
these analyses because the resulting linear equations could be solved without 
recourse to a boundary layer analysis. 

The next step was taken by Lighthill [6] who analyzed the natural convec- 
tion in a closed-end tube with constant temperature walls by a n  integral 
method. He  found that the type of flow in such a tube depends primarily 
on  the height-radius ratio / /Ro ,  for fixed Prandtl and Rayleigh numbers. 
For very small values of / /Ro  the flow is essentially like the free convection 
about a vertical plate, i.e., the effect of the confining walls is negligible if 
the boundary layer thickness is much smaller than the tube radius. For 
somewhat larger I;Ro values, however, this effect is no longer negligible. 
The three flow regimes to be expected if the walls influence each other are 
shown in Fig. 1 .  The first, for small values of URo,  is just the free convection 
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FIG. 1 .  The three flow regimes in a closed-end tube 1521. 

boundary layer flow modified to account for a downward flow outside the 
boundary layer, equal to the upward flow. This regime breaks down at a 
value of I/Ro for which there is no longer a maximum volume flow of cool 
fluid at  the orifice cross section. When IIR, exceeds this critical value the 
boundary layer mixes with the central flow and, when steady state is attained, 
the profiles fill the whole tube. This type of flow may be difficult to perceive 
intuitively so consider the extreme case I/R, 9 1 .  In this case the tendency 
of the upward layer to thicken with axial distance disappears. Then the 
velocity and temperature distributions are similar at each cross section ; 
only their scale increases as the orifice is approached. Therefore, in the 
intermediate //Ro range the velocity and temperature profiles fill the tube 
completely but vary along the tube. For the similarity regime (large I/Ro) 
Lighthill found that the flow fills the entire tube for only one value of I/Ro. 
If I/Ro exceeds this value the motion stops near the closed end so that the 
effective l/Ro becomes equal to that value. Ostrach and Thornton [7] con- 
sidered the same configuration but the temperature varied linearly along 
the cylinder wall. For large / /Ro  they found that flow in the entire tube was 
possible over a range of parametric values rather than for discrete values, 
as in Lighthill’s case. The significant effect of confining boundaries can be 
seen from a plot of the total Nusselt number over the tube length as a 
function of (R, , / / )  Ra (Fig. 2 ) .  For these problems the difficulties associated 
with the analysis of confined regions are again avoided by use of an integral 
method which does not attempt to deal accurately with the flow details. 

Experimental verification of the three laminar flow regimes and the 
predicted heat transfer results was obtained by Martin [8]. Hartnett and 
Welsh [9:1 performed experiments similar to Martin’s but with uniform heat 
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FIG. 2. Nusselt number as function of the product of the Rayleigh number and the 
radius-length ratio for closed-end tube flows [52]. 

flux at the wall rather than uniform temperature. They found that as long 
as Pr > 0.1 the average heat transfer performance in a vertical tube closed 
at the bottom is equivalent for the cases of uniform wall temperature and 
uniform wall heat flux. 

The earliest investigation of natural convection in a completely confined 
configuration seems to have been made by Lewis [lo] who studied the flow 
and heat transfer in the interior of a horizontal circular cylinder with a 
cosine wall temperature distribution; the maximum and minimum wall 
temperatures were on opposite ends of the horizontal diameter. Lewis 
considered only the case of Rayleigh number less than unity for which no 
boundary layer phenomena are encountered. By means of a perturbation 
analysis he found that convection was negligible for this case and that the 
principal mode of heat transfer was, therefore, conduction. A similar 
problem was treated by Zhukhovitskii [I l l .  An excellent survey of low 
Rayleigh number internal natural convection problems is presented by 
Ostroumov [12]. Low Rayleigh number convection inside a spherical cavity 
was investigated by Drakhlin [13]. 

Another completely confined natural convection problem in which the 
difficulties associated with coupling of the boundary layer and the core do 
not occur was analyzed by Ostrach and Braun 1141. Specific consideration 
was given to the flow and heat transfer of a fluid subject to an axial body 
force inside a rotating right circular cylinder of small height which is heated 
at its lower surface. This configuration was studied to see if the centrifugal 
force would generate large natural convection flows. A perturbation method 
was used that led to simplified equations that could be solved exactly so 
that no boundary layer type of analysis with the incumbent difficulties 
mentioned above was necessary. It was found that the Coriolis force inhibits 
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the motion so that no appreciable convection is obtained unless radial 
vanes are inserted in the cylinder to inhibit this force. 

1. Boutidury Layer Aspects 

The first work dealing with the much more difficult large Rayleigh number 
internal natural convection problem was that of Ostrach [I51 who studied 
the same configuration as Lewis. The case he considered corresponded to 
that of a large Grashof number and a Prandtl number of unit order.' He 
therefore concluded that both flow and  thermal boundary layers were 
adjacent to the cylinder wall and he assumed that the core would be iso- 
thermal and would rotate as a solid body, i.e., the vorticity would be uniform. 
His boundary layer solutions could not be carried out t o  a high degree of 
accuracy because no high speed computers were available. Nevertheless, 
his postulate of an  isothermal rotating interior core was used by all investi- 
gators until recently. 

A somewhat similar configuration was studied by Pillow [I61 who wanted 
to determine the heat transfer through a fluid in cellular convective motion 
between two infinite horizontal planes. When the lower plate in such a 
configuration is at  a higher temperature than the upper one, the configura- 
tion is thermally unstable and a cellular motion occurs after a critical value 
of the Rayleigh number is exceeded. (See Ostrach [5] for more discussions 
of thermal instabilities.) The cells were assumed to be two-dimensional, 
with the cell axes horizontal. The boundaries of the cell were taken to be 
the two horizontal plates and two parallel vertical planes of symmetry. 
Pillow considered the large Grashof number, unit-order Prandtl number 
case, and showed that in the linut of infinite Grashof number, viscous and 
thermal diffusion could be neglected in the interior, and general solutions 
for the temperature and  vorticity in the interior were obtained from the 
resulting simplified equations. These solutions, when coupled with appro- 
priate symmetry arguments, also led Pillow to conclude that the interior of 
the cell was a n  isothermal region of uniform vorticity. The boundary layer 
equations, however, presented a nonlinear problem which could only be 
solved in  a very approximate manner. Still, it was possible to ascertain that 
the heat transfer was proportional to the five-fourths power of the tempera- 
ture difference between the horizontal plates, a result previously determined 
by the experiments of Mull and Reiher [17]. Experimental verification of 
the existence of an  isothermal interior region in  such a configuration 
appeared earlier in the work of Schmidt and Saunders [IS]. 

Since the Rayleigh number is equal lo the product of the Prandtl and Grashof numbers, 
a large Rayleigh number could, obviously, also correspond to a large Prandtl number 
and a unit-order Grashof number. This possibility will be discussed subsequently. 
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The heat transfer through gas layers confined in rectangular cavities 
composed of isothermal vertical walls and either perfectly conducting or 
perfectly insulating horizontal surfaces was investigated by Batchelor [ 191 
for the case of height-to-width ratios of the layers between 5 and 200. It 
was reasoned that several different flow regimes could occur within the 
cavity depending on the values of the height to width ratio ( / id )  and the 
Rayleigh number (Ra). For small values of the Rayleigh number, Batchelor 
employed a perturbation scheme similar to that of Lewis [lo] and, as 
expected, concluded that convection was unimportant compared to con- 
duction. Conduction was also found to be the sole means of heat transfer 
in the asymptotic case of /Id -+ co and general Ra. In this case the tempera- 
ture distribution in the gas (air) was found to vary linearly between the walls 
and the fluid flow was entirely vertical. Convection effects were restricted 
to the upper and lower ends of the cavity and as the Rayleigh number 
approached those values appropriate to a boundary layer analysis, these 
end effects propagated into the rest of the cavity. This asymptotic case of 
infinite height-to-width ratios had also been investigated earlier by Ostrach 
[4] who treated it as a special case in a general analysis of natural convection 
flows between parallel, vertical, isothermal plates. In the work of Ostrach, 
the effect of viscous dissipation was also included. 

The boundary layer case corresponding to large Rayleigh numbers with 
general height-to-width ratios was also formulated by Batchelor and, based 
on the work of Pillow [16], the interior was taken to be isothermal and to 
have constant vorticity. It should be noted, however, that thermal boundary 
conditions in the problems treated by Pillow and Batchelor were distinctly 
different. The problem as formulated in  this way was later solved numeri- 
cally by Poots [20] using a method based on expansions in  orthogonal 
polynomials. These results, as well as those obtained by Batchelor for the 
lower Rayleigh number situations were also compared in the respective 
papers to the work of Mul l  and Reiher [17]. 

The question of the nature of the interior region of a closed streamline 
flow in which viscous effects were restricted to the vicinity of an enclosing 
solid surface was investigated by Batchelor [21] in  a fornlal way. As a 
theorem he was able to show that as long as the interior was not stagnant, 
the vorticity there was constant. The nature of the equations was such that 
the proof applied only to isothermal regions. The boundary of the interior 
region had to be a closed streamline lying completely in  the region of the 
small viscous forces (i.e., this bounding streamline could not pass through 
any part of the viscous boundary layer adjacent to  the solid surface). With 
this work, then, it appeared that the nature of the core was now well under- 
stood and described. 
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Martini and Churchill [22] presented experimentally determined velocity 
and temperature profiles for the case of natural convection of air within a 
horizontal cylinder. The cylinder wall was cut along a vertical plane and 
the two halves were maintained at  different uniform temperatures. The 
Rayleigh number was varied between approximately 2 x lo5 and 8 x lo6. 
Obviously, although the circumferential temperature distribution was a step 
function instead of a cosine, this configuration was quite similar to that of 
Ostrach [15]. Some of the more interesting observations made by Martini 
and Churchill were: ( I )  most of the flow took place in a narrow ring adjacent 
to the cylinder wall, (2) the interior region was relatively stagnant, and (3) 
the temperature distribution i n  the interior was that of a stratified fluid with 
the isothermals being horizontal and the temperature increasing vertically 
upward. For the first time, these experimental results cast more than a 
little doubt on the intuitively plausible supposition that when a fluid is 
heated from the side, the interior should be isothermal and should rotate 
as a solid body. 

A numerical integration of the differential equations with boundary 
conditions corresponding to the case investigated experimentally by Martini 
and Churchill [22] was carried out by Hellums and Churchill [23]. Reason- 
ably good agreement was obtained between the numerical and experimental 
results. 

These experiments of Martini and Churchill dealing with a horizontal 
cylinder were followed closely in the literature by those of Eckert and 
Carlson [24], who dealt with air layers enclosed between vertical isothermal 
walls, the same case investigated analytically by Batchelor [I91 as already 
discussed. The apparatus used by Eckert and Carlson could be assembled 
with height-to-width ratios from 2. I to 46.7 and the temperature difference 
between the vertical sides was varied between 10°F and 160°F. The selection 
of widths and temperature differences used enabled the Rayleigh number 
to be varied from approximately 200 to 2 x 10’. The temperature field was 
determined in great detail using a Zehnder-Mach interferometer while no 
velocity determinations were made. As predicted by Batchelor, the experi- 
mental results showed that below a certain Rayleigh number (prior to the 
formation of a boundary layer regime) and above a certain height-to-width 
ratio, heat was transferred from the hot to the cold boundary by conduction 
in the central part of the layer, while convection effects were restricted to 
the corner regions. However, in  the boundary layer regime (above a certain 
Rayleigh number and below a certain height-to-width ratio) the core of the 
layer was not found to be isothermal as predicted by Batchelor, but instead, 
the temperature was uniform along horizontal lines only and increased in 
the vertical direction. Based on their experimental observations, Eckert and 
Carlson concluded that it was extremely doubtful whether a core of uniform 
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temperature would ever exist a t  large Rayleigh numbers unless the height- 
to-width ratio was extremely small. 

Using finite difference methods, W ilkes [25] numerically solved the 
transient and steady-state problems for natural convection in rectangular 
cavities having isothermal vertical walls. For a height-to-width ratio of 
unity and for a Rayleigh number of order los, his results show the iso- 
thermals to be almost horizontal lines in the interior with a temperature 
gradient established in the vertical direction such that the temperature 
increases upward. A plot of the streamlines for this case indicated a definite 
decrease in velocity as one left the boundary layer region and moved toward 
the interior indicating a relatively stagnant core. Gershuni and his co- 
workers [26] obtained similar numerical results. Clearly these results tended 
to corroborate the findings of Eckert and Carlson [24] for the boundary 
layer regime. 

Experiments which further support the stratified core configuration are 
reported by Elder [27]. These experiments were made in a rectangular slot 
across which a constant temperature difference was maintained and the end 
walls were insulated corresponding to Wilkes’ configuration. The cavity 
was such that the motion remained two-dimensional and the ranges of para- 
metric values were: height-width ratios from unity to 60, Prandtl number 
equal to lo3, and Rayleigh numbers up to lo8. 

For Rayleigh numbers below lo3 the temperature field was essentially 
the same as for conduction and there was a weak stable unicellular circula- 
tion generated. For  Rayleigh numbers between lo3 and lo5 boundary layers 
formed near the wall and the interior region exhibited a uniform vertical 
temperature gradient. The flow resembled that along an isolated isothermal 
vertical wall except that the boundary layer growth on each wall is inhibited 
in the central part of the slot by the presence of the other wall. In the lower 
half of the slot the interior fluid is entrained as the boundary layer grows. 
In the upper part the interior temperature gradient decreases the buoyancy 
force which decreases the boundary layer thickness. Near Rayleigh numbers 
of lo5 secondary flows also appeared in  the interior. 

Gill [28] recently analyzed the configuration studied experimentally by 
Elder [27]; his work is also meant to be an  extension of Batchelor’s [I91 
for the case of large Rayleigh number (Rayleigh number much larger than 
the slot height-width ratio). By an order of magnitude argument, Gill 
contends that there can only be horizontal motions in the core and the tem- 
perature can be a function only of the vertical coordinate. By a n  Oseen-like 
method he linearizes the boundary layer equations and obtains results that 
agree with Elder’s experiments in regard to the entrainment of fluid by the 
boundary layer in the lower half of the slot and ejection by the boundary 
layer in the upper half, on the warmer wall. 
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A numerical study similar to that of Wilkes, also for a rectangular cavity, 
was made by de Vahl Davis [29] for steady flow only and for large Prandtl 
numbers and unit-order Grashof numbers. Again the horizontal isotherms 
and streamlines in the core were indicated with the slope of these isotherms 
tending to become negative for increasing Rayleigh number; in other words, 
outside the boundary layer on the cold wall, say, the fluid temperature is 
greater than that at the corresponding location outside the boundary layer 
on the hot wall. The vertical temperature gradient in the center of the 
cavity is essentially zero for small Rayleigh numbers and approaches an 
asymptotic positive value as the Rayleigh number becomes very large. 
This asymptotic value was found to be dependent on the horizontal wall 
conditions, namely, whether they were insulated or had a prescribed linear 
variation between the two vertical wall temperatures. 

Polezhaev [30] numerically integrated the Navier-Stokes and energy 
equations for unsteady natural convection of a compressible fluid in a 
square cavity to show the origin and development of secondary flows in the 
core at large Grashof numbers. 

Prior to the work of Elder and Gill, Weinbaum [31] reconsidered the 
horizontal cylinder configuration with a cosine wall temperature distribution 
that was first treated by Lewis [lo] and Ostrach [15]. He generalized the 
configuration (see Fig. 3) by introducing an arbitrary phase angle between 

FIG. 3. The horizontal cylinder configuration. 

the horizontal direction and the diameter on which the imposed wall tem- 
perature maximum and minimum occur. In  this way situations ranging 
from heating-from-the-side (phase angle of zero), corresponding to Ostrach's 
case, to the thermally unstable case of heating-from-below (phase angle of 
90') could be treated. For small Rayleigh numbers he used a perturbation 
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method similar to that of Lewis [lo]. For large Rayleigh numbers (large 
Grashof number and unit-order Prandtl number) Weinbaum considered 
that the flow field could be broken into interior and boundary layer regions 
as did Ostrach. After proving the interior to be isothermal, Weinbaum 
invoked the theorem of Batchelor [21] pertaining to a closed-streamline 
region of small viscosity and demonstrated that the vorticity in the interior 
would be uniform. Then, in order to solve the rather complicated boundary 
layer equations (a set of nonlinear, coupled partial differential equations) 
he introduced a linearization scheme known as the “modified Oseen” 
technique developed by Lewis and Carrier [32]. Through the application of 
this method it was possible to render both the vorticity transport and energy 
equations linear, and at the same time uncouple the energy equation from 
the boundary layer equations. Solutions were obtained in this way only for 
the case of heating-from-below, because for heating-from-the-side Weinbaum 
was unable to match the boundary layer solution to an interior of uniform 
nonzero vorticity. In order to overcome this difficulty he introduced a 
variation of the modified Oseen method to the full describing equations. 
For the heated-from-below case it was found that the interior rotated 
essentially as a solid body, but when the heating was directed from the side 
the interior tended to stagnate but was isothermal. Velocity and temperature 
profiles for this latter case were compared with those obtained experi- 
mentally by Martini and Churchill [22] for a similar geometry but different 
thermal boundary conditions and qualitative agreement was observed. No 
discussion of the situation for intermediate values of the phase angle was 
given. Also the role of the modified Oseen constant involved in the method 
of solution was not clarified and the means for determining it was left 
rather arbitrary. 

Simultaneously with Weinbaum, Ostrach and Menold [33, 341 considered 
the same configuration except that they restricted interest to the large 
Prandtl number and unit-order Grashof number. The advantage of this is 
that the nonlinear inertia terms in the equations of motion are negligible 
so that considerable mathematical simplification is obtained. The essential 
physical aspects of the problem, however, are retained. 

Ostrach and Menold, using a boundary layer analysis and modified 
Oseen linearization on the energy equation alone, also made the a priori 
assumption of closed-core streamlines and then were able to prove that the 
core was isothermal. This led to the result that the core stream function 
satisfies the biharmonic equation. This implies a region of slow viscous 
flow and is consistent with the limit of large viscosity, i.e., large Prandtl 
number. (This is in  contradistinction to Weinbaum’s result for a core of 
constant vorticity wherein the stream function satisfied Poisson’s equation, 
corresponding to a frictionless flow.) By matching the boundary layer and 
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core solutions they found analytical expressions which included the heating 
phase angle, 4, and the modified Oseen parameter, c, and which were con- 
sistent with a rotating isothermal core. They gave an extensive discussion 
of methods to obtain this latter parameter and showed its dependence on 
the heating angle. As the heating phase angle approached zero (heating- 
from-the-side) the velocity distributions violated the assumption of closed- 
core streamlines and the temperature distribution did not permit thermal 
stratification in the core. 

At this point it was decided that a complete experimental analogue of 
the mathematical model should be studied to try to clarify some of the 
unusual aspects of the results obtained by Weinbauni and Ostrach and 
Menold. The purpose of this experiment was to provide data that would 
indicate Nhich of the various ways of determining the modified Oseen 
constant was best, to show the behavior of the core region as the heating 
angle approached zero, to obtain an indication of the type of motion for 
heating-from-the-side and heating-from-below, and to obtain detailed velo- 
city and temperature distributions for all heating angles. The results of this 
study are reported by Sabzevari and Ostrach [35].  The detailed results will 
be presented later but it was found that the analysis of Menold and Ostrach 
with a rotating isothermal core closely predicted the phenomena when the 
heating phase angle was not close to zero. For heating-from-the-side (phase 
angle zero) the core was found to be relatively stagnant and stratified. 

B. OUTLINE OF PROBLEMS 

The work discussed this far indicates that the character of the core 
velocity and temperature distribution for natural convection at large 
Rayleigh number in a closed cavity depends on the imposed thermal 
conditions. The relatively few existing experiments have shown that under 
proper conditions different core configurations can be obtained. The 
numerical work also has led to different core conditions. With the exception 
of Gill’s Rork [28] all the analytical work to that time considered an iso- 
thermal core with constant vorticity regardless of the thermal boundary 
conditions. Obviously, additional work is required to gain an understanding 
of the complex phenomena involved and to see how the thermal boundary 
conditions affect the type of core flow. 

Numerical methods would seem to have one advantage over the analyti- 
cal boundary layer approach. The numerical work is carried out as a one- 
point boundary value problem by forward integrations and, therefore, 
requires no a priori knowledge of the core configuration whereas boupdary 
layer theory does require information at the outset on the nature of the 
core. The only exception to this is Weinbaum’s variation of the modified 
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Oseen method: even though in his paper he states that this method applied 
for a specific core configuration this restriction actually i s  unnecessary. 

On the other hand, machines with large capacity are required to do 
problems of this type. Furthermore, even for the problems solved, con- 
siderable ingenuity and trial and error were required which made the cost 
of the solutions very high. More importantly, in boundary layer problems 
very steep gradients exist. Solutions of this type are difficult to obtain 
numerically and the problems of numerical stability associated with such 
solutions can be more diflicult than the actual physical problems themselves. 
The mathematical theory of numerical stability is generally not applicable 
for practical boundary conditions. Finally, numerical solutions do not 
easily show parametric effects or unusual physical behavior. For these 
reasons and the fact that the configuration shown in Fig. 3 permits a wide 
range of different thermal boundary conditions the present writer decided 
to continue with the analytical and experimental investigation of this con- 
figuration with his students. 

Because of the prediction of different core conditions for different heating 
configurations, the failure of the modified Oseen method for the heating- 
from-the-side case, the limited calculations, and the ambiguity in the 
evaluation of the Oseen constant a more general mathematical model is 
necessary to account for the complex phenomena observed. Hantman 
[36] therefore reevaluated the linearized solutions of the full describing 
equations and carefully examined the implications of various linearizations. 
Unfortunately, these were found to be not applicable to a stratified core 
situation. Then, for large Prandtl number and unit-order Grashof number, 
he formulated a boundary layer problem which is mathematically tractable 
and accounts for coupling between the core and boundary layer and permits 
consideration of both types of core configurations. 

The results of this work predict a thermally stratified core with a slow 
cross flow from one boundary layer to the other for thermal conditions 
near to and including heating-from-the-side : this is in consonance with 
observations. Concurrently, Brooks and Ostrach [37] carefully mapped the 
streamlines and temperature distributions i n  Sabzevari’s apparatus (slightly 
modified) over a wide range of heating phase angles in order to demonstrate 
the various different flow regimes. 

To summarize then, the detailed nature of the natural convection in a 
cavity at large Rayleigh number seems to depend on the thermal boundary 
conditions. Experiments applicable to the heating-from-below configuration, 
e.g., Schmidt and Saunders [18], indicate that the core streamlines are 
closed, i.e., a rotating core, and that the core is isothermal. In contrast, 
experiments applicable to the heating-from-the-side case, e.g., Martini and 
Churchill [22], Eckert and Carlson [24], Sabzevari and Ostrach [35], Elder 
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[27], and Brooks and Ostrach [37], indicate a thermally stratified core with 
relatively slow flow; in a few instances where flow details were obtained the 
core streandines were found to be horizontal with beginnings and ends i n  
the boundary layers and the streamlines coincided with the isotherms. With 
the exception of the work of Poots [20] all the numerical work, e.g., Wilkes 
[25], de Vahl Davis [29], Gershuni c’f  NI. [26], and Elder [27], was in essen- 
tial agreement with this picture. 

All the analytical work, e.g., Ostrach [ IS] ,  Batchelor [19], Weinbaum 
[31], and Menold and Ostrach [33] ,  except Gill’s [28] and Hantnian [36] 
assumed that the core was isothermal and rotating regardless of the thermal 
boundary conditions. The failure of this assumption for heating-froni-the- 
side was brought out especially by the solutions of Weinbaum and Menold 
and Ostrach. 

The experiments of Sabzevari and Ostrach [35] and Brooks and Ostrach 
[37] indicate that the transition from one type of core flow to the other as 
the heating phase angle decreases is gradual. 

Although a rotating isothermal core has not as yet been experimentally 
observed for heating-from-the-side the possibility of its occurring cannot be 
disnussed. Its occurrence may depend on the initial conditions under which 
the flow is established. Brooks and Ostrach [37] made a preliminary study 
of this by starting the flow with the heating angle such that a steady rotating 
isothermal core was established. They then changed the thermal condition 
to that for heating-from-the-side and found that the stratified relatively 
stagnant core appeared after a long time. This aspect of the problem 
warrants further study. 

One more point must be made here concerning the heating-from-below 
configuration (phase angle 90‘). This is the thermally unstable case which 
is not of direct concern herein. However, one aspect of this case is relevant 
to the present discussion. Weinbaum [31] and Menold and Ostrach [33] 
obtained two-dimensional solutions for this case on the basis of their 
assumption that the core flow formed a single isothermal rotating cell. 
However, because of symmetry a double-cell core would appear to be 
equally possible. Which configuration will appear in reality depends on 
their relative stability. Sabzevari and Ostrach [35] i n  their experimental 
study of this problem were, however, unable to establish any planar flow 
at all for this heating configuration. Thus, the physical meaning of the 
two-dimensional solutions for this case is questionable. A further discussion 
of this point will be presented subsequently. 

The review of existing work on confined natural convection presented 
above was meant to be comprehensive but not all-inclusive, i.e., there are 
some publications to which no reference was made. However, all the signifi- 
cant physical phenomena, observations, and methods of study have been 
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mentioned. In the following section the most important aspects of the 
problem will be described i n  detail and comparisons among related work 
will be given where possible. Because the existing work has centered around 
two basic configurations, viz., a rectangular cavity and a horizontal circular 
cylinder, the following discussion will be divided into two parts, each 
dealing with a given configuration. 

11. Rectangular Cavities 

In this section consideration is given to the two-dimensional convective 
motion generated by the buoyancy force on the fluid in a rectangle and to the 
associated heat transfer. The two long sides are vertical boundaries held at  
different temperatures and the short sides can be either heat conducting or 
insulated (see Fig. 4). Particular attention will be given to the different flow 

Y 

X 

-d-  

T 
FIG. 4. The rectangular configuration. 

regimes that can occur and the heat transfer across the fluid space between 
the two plane parallel vertical boundaries. Although heat transfer by radia- 
tion may not be negligible it is independent of the other types of heat 
transfer and can be fairly accurately calculated separately. 

Interest in this problem arose in connection with the thermal insulating 
value of such a cavity. Such diverse applications of this are double-glazed 
windows and gas-filled cavities surrounding a nuclear reactor core. 

To formulate the boundary value problem that describes this phenomena 
it is assumed that: (a) the motion is two-dimensional and steady, (b) the 
fluid is incompressible and frictional heating is negligible, (c) the difference 
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between the hot wall and cold wall temperatures is small relative to the 
absolute temperatures of the cold wall. This permits the so-called Bous- 
sinesq approximation to be invoked which permits fluid properties to be 
taken as constant except for the effect of the density variation in producing 
the buoyancy force. Thus the basic equations are : 

au av  
ax ay  - + -  = o ,  

aT aT 
U -  + V -  = aV2T. ax a y  (4) 

The associated boundary conditions are: 
C ' = V = O ,  T = T ,  at Y = O  for 0 6 X 6 / ,  ( 5 4  
C ' = V = O ,  T = T ,  at Y = d  for O < X < / ,  (5b) 

C'=  v = o  at X = 0, I for 0 < Y < d, (5c) 

or ( 5 4  
T = Tc + (Tit - Tc)(Y/d), 

aTjax = 0 at X = 0, I for 0 < Y < d. 

To make the equations dimensionless let: 
= xp, = ~ p ,  = (./d)(a$jay), 

u = - (a /d) (d$/a~) ,  0 1 (T - TC)/(TI{ - TC). (6) 

Substitution of Eqs. (6) and elimination of the pressure yield the following 
basic equations which are applicable to all types of flow in the cavity: 

The boundary conditions become : 
IC/ = a$py  = 0, o = o at y = 0, 

$ = d$/ay = 0, 0 = 1 at y = 1 for 0 < x 6 a, 

t+b = a$/& = 0, 0 = 2' or 80px = 0 at x = 0, U .  (9) 
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From the equations and boundary conditions it can be seen that the 
Rayleigh number, Ra, the Prandtl number, Pr, and the aspect ratio, a, are 
the dimensionless parameters associated with this problem. Because the 
boundary value problem posed above is very complex, appropriate solutions 
for limiting values of the dimensionless parameters can be sought. As 
mentioned earlier Batchelor [19] used this approach to investigate three 
cases, viz., small Rayleigh numbers, infinite aspect ratios (fully-developed 
flow), and large Rayleigh numbers. The last of these is the interesting 
boundary layer case and he was not able to obtain a solution which was 
consistent with his choice of a core which was isothermal and had constant 
vorticity. Poots [20] obtained a numerical solution which was consistent 
with Batchelor’s model and found good agreement with Jakob’s [38] correla- 
tion of Mull and Reiher’s [I71 experimental data. This appears surprising 
in view of the fact that the assumed core configuration has not been experi- 
mentally observed to date. However, the validity of Mull and Reiher’s 
experiments and those of de Graff and van der Held [39] have been 
questioned by Emery [40] and Jakob [38]. The only other attempt to find 
an analytical solution to the problem was made by Gill [28] but since he 
relied heavily on experimental results, discussion of his work will be delayed 
until later. 

The flow and temperature distributions can best be described from the 
works of Eckert and Carlson [24] and Elder [27]. In the former the tempera- 
ture field is quantitatively obtained by evaluating the interferograms. 
Representative examples of these fields are presented in Fig. 5. In these 
figures the difference between the local temperature, T, and the cold-plate 
temperature, T,, is plotted over the distance, Y, from the hot plate, in 
inches. The temperature scales on the ordinate are for two of the tempera- 
ture profiles; the others are shifted in the vertical direction. A temperature 
field with a linear drop in the center portion is shown in Fig. 5(a). This 
situation is referred to as the “conduction regime.” On the other hand, in 
Fig. 5(c) the appearance of thermal boundary layers can be observed near 
the surfaces and the profiles are horizontal in the central core. The boundary 
layer thickness on the hot plate increases upward and increases downward 
on the cold plate. The temperature profiles i n  the boundary layers resemble 
those in free convection on a single plate. This type of profile is said to be 
in the “boundary layer regime.” Temperature profiles for conditions 
between the conduction and boundary layer regimes are shown in Fig. 5(b). 
Tbe profiles are curved throughout the entire height of the air layer which 
indicates that convection contributes to the heat flow from the hot to the 
cold surface. These profiles have no horizontal part. In a sense this situation 
can be considered as one in which the boundary layers are not thin relative 
to the width and, therefore, they interact. This case is referred to as the 
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FIG. 5 .  Temperature field in air layer with 14 in. height [24]. (a) Conduction regime 
(b) transition regime; (c) boundary layer regime. 

“transition regime.” It should be noted that these types of flow are essenti- 
ally the same as those indicated by Lighthill [6] for a closed-end tube. 

The temperatures measured along a vertical line midway between the hot 
and cold surfaces are presented in Fig. 6. In Fig. 6(a) the centerline tem- 
peratures are presented for the conduction and transition regimes. The 
experimental data indicated by crosses are for the conduction regime. The 
region with a linear temperature drop from the hot to the cold plate coin- 
cides with the region in Fig. 6(a) in which the dimensionless temperature is 
0.5. The other points are for measurements in the transition region. 
Measurements in the boundary layer regime are presented in Fig. 6(b) for 
a n  aspect ratio of 10 and in Fig. 6(c) for an aspect ratio of 2.5. The tem- 
peratures in the core of the air layer are by no means constant but vary 
approximately linearly with vertical distance. The centerline temperature 
variation i n  this regime does not appear to be significantly affected by the 
aspect ratio as can be seen by comparison of Figs. 6(b) and 6(c). This then 
is the contradiction of Batchelor’s conclusion [I91 that the core temperature 
is uniform. 

For small temperature differences one would expect symmetry in the 
temperature field about the midpoint in the sense that the field in the lower 
half of the airspace is the negative image of that in the upper half if the 
ends were perfect thermal insulators. If this were so the centerline profiles 
would pass through the value 0.5 at Xjcl = 0.5. From Figs. 6(b) and 6(c) 
it can be seen that this is not quite so which indicates either a slight heat 
loss through the ends or that the air properties had some dependence on 
the temperature. 
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Because the heat transfer will depend on the type of flow regime that 
occurs, Eckert and Carlson [24] then attempted to delimit the various 
regimes in terms of the range of values of the Grashof number and aspect 
ratio. To this end the interferograms were studied and those in which a 
linear temperature drop exists in  some part of the flow field are indicated 
by circles in Fig. 7. The conditions for which the temperature profile has a 
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FIG. 7. Extent of various regimes [24] 

horizontal part over at least a portion of the flow field are indicated by 
crosses. All other experimental data are indicated by squares. The number 
of experiments was not sufficient to establish the limits of the heat transfer 
regimes exactly. However, the heavy lines in the figure are expected to give 
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reasonable approximations. From various estimates Batchelor [ 191 obtained 
the relation Ra = 500 ( / / d )  for the limit of the conduction regime. This 
relation is represented on Fig. 7 by the dashed line and its location agrees 
fairly well with the data. However, its slope appears to be somewhat too 
small. 

In some of the experiments turbulent fluctuations were observed and, in 
most cases, these were restricted to the core region. Data points taken with 
such fluctuations are indicated by symbols to which are added short vertical 
lines. From the figure it appears that the turbulent fluctuations are not 
connected with the establishment of the various flow regimes. The intensity 
of the fluctuations increased with Grashof number for a fixed aspect ratio. 
The fluctuations had a comparatively low frequency and in some cases 
regular wave motions similar to those observed in boundary layers were 
obtained. 

A. HEAT TRANSFER IN THE CONDUCTION REGIME 

In this regime heat is transferred between the two vertical surfaces by 

(10) 

conduction alone in the central part of the air layer. From 

4 = ( k / d ) ( ~ , . ,  - T,j = w,, - w, 
which defines the local heat transfer coeficient on the hot or cold surface, 
the local Nusselt number in that region is 

 NU^,^ = /iCcl/k = 1. (1 1) 

Eq. (11) can also be interpreted as the ratio of an apparent conductivity of 
the air layer to the actual conductivity, k .  The evaluations from the inter- 
ferograms agree very closely with Eq. ( 1  I ) .  

The local heat transfer conditions, however, are different in the corners 
of the air layer. From symmetry one would expect that almost the same 
heat transfer coefficients apply for the hot and the cold plate at diagonally 
opposite corners. From the interferograms it was found that in one pair of 
corners heat transfer coefficients were larger than in the central part. These 
are the lower corner on the hot and the upper corner of the cold plate and 
are, accordingly, called “starting corners.” In the other two corners the 
heat transfer coefficients were lower than in the central part and those 
corners are referred to as “departure corners.” 

As long as end effects do not penetrate to the center the local heat transfer 
in the corners should be independent of the height, I, of the cavity. There- 
fore, the local Nusselt numbers i n  the corners should be of the form 

where 
Nu, =f(Grx, X l 4 ,  (12) 

Nu, = hjXk  and Gr, = flg(T, - T,-jX3/v2. 
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1. Starting Corners 

The interferograms indicated that the local Nusselt number in the starting 
corners is also independent of X/d .  The experimental data for both the hot 
and cold plates can be reasonably approxiniated by 

= 0.256(GrX)’ 24. (13) 

The length X on which the dimensionless parameters are based is the 
distance from the corner measured along the hot or cold surface. 

It can be seen from Eq. (12) that the heat transfer coetficient decreases 
as the distance X increases. The limit of applicability of Eq. (13) is reached 
at  a point where the heat transfer coefficient determined by that equation 
becomes equal to that in the center part of the plate. The corresponding 
distance, X,, from the corner is called the “depth of penetration.” It is 
determined by setting the local Nusselt number, Nu,, for the central part 
which is, according to Eq. (11), equal to Xid, equal to the local Nusselt 
number as given by Eq. (1 3). Accordingly, 

X,,, /d = 0.256(G1-,)’.~~ = 0.2S6(Grd)o.24(Xp,s/d)o~72. 

The ratio of penetration depth to distance between the plates is, therefore, 

Xp , s  Id = 0. o m (  Gr,)’. ’ . (14) 
An average heat transfer coefficient for the corner region is defined by 

and the average Nusselt number is, thus 
- 
NU,,, = J,d,’k 

Substitution of the heat transfer coefficient obtained from Eq. (13) into 
Eq. (15), integrating, using Eq. (141, and substituting the average heat 
transfer coefficient into Eq. (16) yields the average Nusselt number in the 
starting corners 

 NU^,^ = 1.389 (17) 

2. Departure Corners 

A study of the interferograms indicated that the local Nusselt number 
for departure corners was of the form given by Eq. (12). To correlate the 
data a second Grashof number, Gr,, was used rather than the ratio Xld 
because it does not depend on the local distance, X. The data is well 



NATURAL CONVECTION IN ENCLOSURES 181 

approximated by 

NU,,, = 2.s8(Gr,)0.4(Grd)-o's5. (18) 
This relation describes a heat transfer coefficient which is zero i n  the corner 
and increases with X .  The limit of applicability is again reached at a position, 
Xp, where the heat transfer coefficient described by Eq. (18) becomes equal 
to that i n  the center part. In a manner similar to that for starting corners 
it is found to be 

Xp , d / d  = 0.00875( Gr,)" (19) 
An average Nusselt number for departure corners can also be obtained 

in the same way as above and is 
- 
NU,,, = 0.835. (20) 

3. Average Heat Transfer 

The total heat flux, Q, from the hot to the cold surface including the 
corner regions can be obtained from 

Q = [ / ? c l  f ( i s  - hc)Xp,, + ( i d  - ~ ? ~ ) ~ p , d l ( ~ H  - Tc). (21) 
If the heat transfer coefficients are changed to Nusselt numbers 

- 
NU, = Qd/kl(T, - T,-) 

= + - l)(Xp,?/d) f - l)(Xp,d/d). (22) 
Substitution of Eqs. (14), (17), (19), and (20) into Eq. (22) yields 

- 
Nu, = 1 + (d/l)[0.00292(Gr,)0.857 - 0.0014.4(Gr,)0.75]. 

In the range of Grashof numbers considered this can be well approximated 
by 

- 
Nu, = 1 + 0.00166(d/l)(Gr,)0~9. (23) 

This relation is in reasonable agreement with the expression derived by 
Batchelor [19]. 

B. HEAT 'TRANSFER IN THE BOUNDARY LAYER AND TRANSITION REGIMES 

1. Local Heat Transfer 

No satisfactory correlation of the data in these regimes was obtained by 
the use of Nu, and Gr, as given below Eq. (12), which are based on the 
temperature difference between the hot and the cold walls. Therefore, since 
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the temperature field in the boundary layer regime, Fig. 5(c), indicates that 
the boundary layers on the vertical walls are similar to those on a single 
vertical plate a correlation was attempted based on the difference between 
the wall and centerline temperatures which is characteristic of the single 
plate problem. Therefore, the heat transfer coefficient is defined by 

where T, is the centerline temperature at the height X for which the heat 
flux, q, and the local heat transfer coefficient, h', are defined. This distance 
is measured from the starting corner of the plate and it increases in the 
direction in which the boundary layer grows. The corresponding Nusselt 
and Grashof numbers are 

Nu,' = h'X/k ,  Gr,' = Pg(T, - T,,,)X3/v2. 

If the properties in Eq. (24) are evaluated at wall conditions, these para- 
meters correlate the data quite well in both the transition and boundary 
layer regimes and the relation 

Nu,' = 0.231(Gr',)0.30 

can be used to determine the local heat transfer in these regimes. However, 
to use this equation the centerline temperature must be known. The center- 
line temperatures presented in Fig. 6 together with others measured are 
shown in Fig. 8. From these two figures it can be deduced that the center- 
line temperature is constant for small values of Grd and large values of / / d  
throughout the entire height of the layer. As Gr, increases or lid decreases, 
temperature variations occur first near the upper and lower boundaries of 
the layer. The centerline temperature moves closer to the hot wall tempera- 
ture near the upper boundary and closer to the cold wall temperature near 
the lower one. The regions of varying temperature cover a range which 
increases with increasing Grd until they meet in the center. Further on the 
profile straightens out until it becomes essentially linear within the boundary 
layer regime. In this regime the centerline temperature varies linearly with 
local position, X ,  and the layer thickness has a comparatively small influence. 

The temperature field in the conduction and in the boundary layer regimes 
explains a peculiar behavior of the heat flow through enclosed vertical air 
layers, which was predicted by Batchelor [ 191 and observed experimentally 
by Schmidt [41]. It was found that for a vertical air layer enclosed by a 
cooled and a heated vertical plane the heat flux increased when the air layer 
was subdivided into smaller cells by the horizontal partitions. This is because 
the horizontal partitions cause heat to be transported by convection in the 
conduction regime and new thermal boundary layers start on the hot and 
cold surfaces in the boundary layer regime. The average boundary layer 
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thickness in the space with partitions will, therefore, be smaller than when 
the partitions are absent. 

2. Average Heat Transfer 

An average heat transfer coefficient can be calculated from Eq. (25) for 
the boundary layer region. With the definitions 

- i 1  
Nu, = - and h(TH - Tc) 

k 
one obtains 

The dimensionless centerline temperature in Fig. 6(b) can be approximated 
by 

X 
= 0.83 - 0.60 - . TH - Tm 

T H  - Tc 1 

Substitution of this equation and Eq. (25) into Eq. (27) leads to 

Nu, = 0.1 19(Gr,)0.3. (29) 



I84 SIMON OSTRACH 

Batchelor [I91 estimated that the Nusselt number in the boundary layer 
region should be given by 

- 
N u ,  = C(Gr,)''4, 

where the constant C takes on values of 0.38 and 0.48. This difference 
between his relation and Eq. (29) is probably due to Batchelor's unrealistic 
assumption of a uniform core temperature. 

Eq. (29) can be written as 
- 
NU, = 0.1 19(Grd)0.3(d//)0.1. 

This indicates the small effect of the aspect ratio on Nud or the equivalent 
ratio, kJk,  of apparent conductivity to true conductivity of the fluid. The 
heat transfer coefficients calculated from this equation agree within approxi- 
mately 20% with the measurements of Mull and Reiher [17]. I t  should be 
noted that Eq. (29) is valid only for the boundary layer regime because the 
linear relation for the centerline temperature, Eq. (28), was used in its 
derivation. 

The exponent in  Eq. (25) might suggest that the flow in the boundary 
layers is turbulent. However, this does not agree with the visual observations. 
The temperature variation in the core of the fluid is believed responsible 
for the relatively high value of the exponent. 

Eckert and Carlson's [24] observations with air described above were 
confirmed by Mordchelles-Regnier and Kaplan [42] using carbon dioxide 
gas at high pressures. 

C. BOUNDARY LAYER FLOW 

Elder [27]  gave further insight into the boundary layer flows through his 
experiments in which the fluids used were medicinal paraffin and silicone oil 
which have Prandtl numbers near one thousand. Velocity measurements 
were made by direct observation of aluminum powder suspended in the 
fluid, either by timing the passage of a single particle between fixed marks 
in the eyepiece of a traveling microscope or from time photographs in which 
streak length was proportional to velocity. The upper end of his cavity was 
open to the air so that his thermocouples for temperature measurements 
could be inserted. This caused his two end boundary conditions to be 
different and also made his configuration different from Eckert and Carlson's 
in this regard. 

Elder points out that for Ra < lo3 (conduction regime) the temperature 
distribution is such that the fluid is not in hydrostatic equilibrium. The 
column of fluid near the cold wall has greater weight than a similar column 
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near the hot wall. Therefore, a weak, steady circulation of constant sign is 
generated in the cavity. This is a unicellular motion with fluid ascending 
over half the slot width near the hot wall and descending in the other half 
near the cold wall. 

Since E:lder’s particular interest is in the flow in the case of strong con- 
vection, especially insofar as it produces secondary flows, he presents in 
Fig. 9 the temperature distribution in an enclosure with an  aspect ratio 
u = 20 and Ra = 4.0 x los;  under these conditions the flow is approaching 
the situation under which secondary flow appears. 

FIG. 9. Temperature distribution: o 20; Ra  = 4.0 x lo5 ((1: 3 cm, AT 7 16.0.C 
horizontal scale. Lines drawn at constant values of 0 paraffin). Notc: vertical scale is 

[27]. 

Three regions can be distingui\hed: a wall region, an interior region, and 
an end region. In the wall region 0 < (I,,?) < 0.2 the isotherms are slightly 
inclined to the wall and the temperature gradients are largest there. The 
interior region 0.2 < y < 0.8 has nearly horizontal and  regularly spaced 
isotherms from 0 = 0.35 to 0.65 and is a region of nearly uniform, positive, 
vertical temperature gradient. Near the ends, X < O.la, X < 0.9u, the 
pattern is strongly influenced by the end boundary conditions. The end 
regions act as buffers between the end boundary conditions and the nearly 
unidirectional flow between them. The end region is not sharply defined but 
for small Rayleigh numbers its vertical extent is about 2d and at large 



186 SIMON OSTRACH 

Rayleigh numbers about 0. la.  Elder never found secondary flows originat- 
ing in the end regions; these always appeared to be regions of strong 
damping. 

The temperature profiles measured by Elder are quite similar to those 
found by Eckert and Carlson [see Fig. 5(c)]. In the inner region 0.2 < y < 0.8 
all points taken at  different vertical locations lie along the same curve which 
indicates that 0 = (T  - T,,,),’(T,l - T,) is independent of A’. Near the walls, 
however, 0 is a function of both X and Y .  From measurements of the 
centerline temperatures Elder also found the vertical gradient of this tem- 
perature to be nearly uniform over an order of magnitude variation of the 
Rayleigh number and more than a sixfold variation of the aspect ratio. The 
centerline vertical temperature gradient was found to reach an asymptotic 
value beyond Rayleigh numbers of lo5 and up to  a t  least lo8.  The product 
of this gradient and the aspect ratio, Ta = l/(T,l - T,)(dT,,,/dx)a, approaches 
0.50 for paraffin, 0.55 for 100 centistoke silicone oil, and Eckert and Carlson’s 
results for air give 0.60. Thus, T a  is a weak function of the Prandtl number. 
Note that r is approximately equivalent to the temperature gradient given 
by half the slot temperature drop established over the height of the slot. 

Experimental velocity profiles measured at one-half the gap height for 
four different values of the Rayleigh number are shown in Fig. 10. The 
various parameters associated with these profiles are summarized in Table I. 

FIG. 10. Velocity profiles at X = l j2  at  various Ra; (a) 3.08 x lo4; (b) 2.95 / 10’; 
(c) 6.56 x lo6; (d) 3.61 x 10‘ [27]. 
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TABLE 1 

VELOCITY PROFILE PARAMETERS 

I O(a) 2.00 38.8 5.40 50.6 3.08 Y 10' 

1 O(C) 4.08 56.5 11.6 46.7 6.56 >: 10' 
1 O(d) 4.08 29.3 33.5 33.8 3.61 x 10' 

10(b) 4.08 56.0 5.75 49.0 2.95 x 1 0 5  

The profiles are all antisymmetric about y = f as required by symmetry 
and the symmetry of the boundary conditions, except for a tendency to 
higher velocities and smaller wall layer thickness in the flow near the hot 
wall. This is a result of the variation of viscosity with temperature. Profile 
lO(a) has an infection point at y = f and is very similar in form to that 
required as the Rayleigh number approaches zero. Profiles 1O(b) and 1O(c) 
have three inflection points which become more widely separated as the 
Rayleigh number increases and the velocity profile becomes increasingly 
localized near the two vertical surfaces. The velocity profiles at various 
values of X for fixed Ra and a are presented in Fig. 1 1 .  The velocity is 
greatest near .Y =a12 but the profiles at X = 30, 40, and 50cm are indis- 
tinguishable. 

0 Y 0.5 

FIG. 1 I Velocity profiles for t l  ~ 4.08 cm. 1 = 75.7 cm, Ra 7 4.0 x lo5 at various 
values of .Y [27]. 

1. lnnes Flow as Rayleigh Nutnhes Becotncls Very Large 

There is little experimental information for the inner flow at large Ray- 
leigh numbers but existing information strongly suggests that the inner 
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region has zero vorticity and a finite, positive temperature gradient. This 
evidence is of necessity restricted to Ra < lo8 because at about that 
Rayleigh number the motion is no longer steady. To obtain further insight 
into what is occurring in this region consideration is given to a nearly square 
cavity (a = 0.92) filled with silicone oil and a Rayleigh number of 9.4 x lo6. 
In this experiment both upper and lower boundary conditions are identical; 
the upper free surface is replaced by one identical with the lower one. The 
results are sketched in Fig. 12 from a sequence of time photographs and 
confirmed by visual inspection. Three distinct areas can be seen: ( I )  a wall 
region with strong clockwise circulation in which the streamlines closely 

FIG. 12. Streamlines of laminar flow in a nearly square cavity. a = 0.92, 
Ra = 9.6 Y lo6. The stream function has been scaled to 100 units at the cavity center [27]. 

follow the shape of the wall, (2) a part of the interior adjacent to the vertical 
wall layers also with clockwise circulation but in which the streamlines do 
not follow everywhere the wall shape; these weak circulations are attached 
to the vertical layers and produce a weak return flow in the outer portion 
of the vertical layers, (3) the central part, or core, of the interior where no 
detectable flow could be observed even though a velocity of 1 % of the 
maximum in the boundary layer would have been easily detectable. How- 
ever, the experiments did not find the motion in the core to be zero because, 
in the course of several runs, a characteristic distribution of the aluminum 
powder was found, namely, a concentration of randomly oriented particles 
along a line near ‘i = a,’2 as drawn in  the figure. This suggests a zone of 
both very small velocity and shear. (Elder does admit that this distribution 
could have been established during the transient heating period.) 
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2. Secondary Flow 

Representative streamlines traced from photographs for flows with 
increasing Rayleigh number are shown in Fig. 13. For Ra = 3.0 x lo5 
the flow i:; unicellular, Fig. 13(a), with the streamlines circulating from one 
end of the slot to the other. As the Rayleigh number is increased to 
3.6 x 10’ a second set of streamlines appeared, Fig. 13(b), one short cell 
and one which reaches to the upper end region. These cells are very weak 
and near the critical Rayleigh number are extremely difficult to detect 
especially when the wavelength is large. Further increases of the Rayleigh 
number causes the wavelength to decrease, Fig. 13(c), and more cells are 
fitted into the inner region, Figs. 13(d)-13(f). The critical Rayleigh number 
for the onset of the secondary flows was found to be Ra = 3 x 10’ k 30%. 
The large uncertainties are due to the difficulty of detecting the onset of the 
very weak secondary flow. 

Under some conditions there appears to be a nonlinear interaction 
between the secondary flows and the primary flow. The dimensionless 
centerline temperature is shown i n  Fig. 14 for two values of the Rayleigh 
number. For Ra = 5.3 x 10’ which is near critical the profile is nearly 
linear except for a weak barely significant periodicity of wavelength approxi- 
mately eight. At Ra = 3.3 x lo6 the oscillations are pronounced with 

FIG. 13. Sketch of streamlines of the secondary flow at various values of Ra:  (a) 
3.0 x 10’; (b) 3.6 x lo5; ( c )  4.9 10’; (e) 5.8 x 10’; (f)  6.8 x lo5. d - 2cm, 1 : 38 crn 
~ 7 1 .  
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I 

0.5 
8, 

t 
0 

FIG. 14. Centerline temperature 0, when the secondary flow is present, d = 4.08 cm; 
( I )  Ra = 5.3 X 10'; (2) Ra = 3.3 >: lo6. The position of the shear layers between cells 
is indicated [27]. 

distinct and extensive portions where the vertical gradient of the centerline 
temperature is zero. Visual observation of the slot shows that the shear 
layers between each cell coincide with regions of large vertical gradients of 
the cent erline temperature. 

The interaction with the primary flow is strikingly shown in the tempera- 
ture distribution on Fig. 15 for Ra = 3.3 x lo6. While the basic variation 
is still dominant in the inner region the isotherms are both steepened and  
given a periodic variation of spacing. The local temperature variation due  
to the interactions is f 0.015 AT in the figure. Colder fluid is carried from 
near the cold wall across the cavity and up the hot wall where it is heated 
and again carried across the slot to the cold wall. 

3. Tertiarjt Flow 

The most intriguing feature of Elder's work occurs near Ra = lo6. After 
the occurrence of secondary flow as the Rayleigh number is increased, a 
pronounced and rapid change is observed in the weak shear layers between 
successive cells of the secondary flow. The shear layers become thicker and 
the patterns indicate that the aluminum particles are trapped and suggest 
that a new flow has appeared. Close inspection confirms this.  From photo- 
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FIG. 15. Detail of the temperature distribution showing the interaction of the primary 
and the secondary temperature field. Isotherms are  in units of 1/40 C. Ra = 3 3 fi lo6; 
d = 4.08 cm [27]. 

graphs (presented in Elder’s paper [27]) and visual observations the tertiary 
flow is of’ the form of a circulation with closed streamlines. Whereas the 
primary and secondary flows both have a clockwise motion the tertiary flow 
has the opposite sense. 

Detailed measurements of the tertiary flow are difficult. The velocity 
distribution can be determined with acceptable accuracy but the tempera- 
ture variation produced by the secondary flow is only of the order of * 0.02 

From his experiments and a study of the basic equations that describe 
the phenomena Elder concludes his paper with a general discussion of the 
flow and some of the mechanisms that produce it and, as a summary, it is 
instructive to present some of this information here. 

The flow can be considered as an interaction between two thermal 

(Tti - TC). 
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boundary layers, one on the hot vertical surface and the other on the cold 
one. If the two walls are widely separated the flow near one plate can be 
expected to be essentially independent of the other plate. If attention is 
focused on  the hot plate then from the results for a single vertical plate, 
e.g., Ostrach [43], it is seen that the velocity i n  the thermal boundary, which 
grows near the wall, is nearly vertical except for a small horizontal entrain- 
ment velocity, which is a function only of the vertical coordinate. Thus the 
fluid far from the plate is at  a constant temperature but has a horizontal 
velocity which is a function of height. Similar considerations apply to the 
cold surface. However, the entrainment velocity required for an  isolated 
plate cannot simultaneously satisfy the requirements of both plates. 

The role of the vertical temperature gradient in this process is as follows: 
Near the bottom of the slot the buoyancy forces exceed the viscous forces 
and accelerate the fluid, but because of the vertical temperature gradient 
the buoyancy force diminishes until at the mid-height it is balanced by the 
viscous forces. Beyond this point the fluid is decelerated. Outside the wall 
layers there will again be a horizontal entrainment flow. Near the mid-height 
the entrainment velocity approaches zero as required by continuity and the 
symmetry of the boundary layer growth. Thus, the horizontal entrainment 
velocity is negative in the lower half of  the slot and positive in the upper 
half, which corresponds to entrainment of fluid into the growing layers 
but out of the layers beyond their point of maximum growth. The measure- 
nients of Eckert and Carlson [24] clearly demonstrate these features. 

When the centerline vertical temperature gradient is zero the two boundary 
layers completely f i l l  the slot. Heat is then transferred across the slot by 
thermal conduction alone and the consequent motion corresponds to a 
balance between buoyancy and viscous forces. When the centerline vertical 
temperature gradient is constant there is a complete separation of the two 
wall layers with a n  interior region i n  which there is almost no motion and 
the horizontal temperature gradient is zero. I n  this case no heat is trans- 
ferred between the two layers. 

On the basis of a crude argument Eldcr showed that the experimentally 
determined result that the product of the centerline vertical temperature 
gradient and the aspect ratio is constant is in  consonance with boundary 
layer growth on an isolated vertical surface. He therefore suggests that wall 
layers in the slot grow like on a single surface. More importantly he claims 
that this suggests that the vertical temperature gradient arises from the 
interaction of the boundary layers, i.e., by inhibiting entrainment rather 
than from effects in the end regions with mere conduction from the hot 
upper to the cold lower end producing the gradient. 

Above Rayleigh numbers of approximately lo5 a secondary flow appears 
in the interior region with streamlines resembling a “cats-eye” pattern. 
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A curious feature of the secondary flow is the strong tilting of the shear 
layers between the cells. 

In another paper Elder [44] studies the transition in a vertical slot from 
laminar to unsteady and then to turbulent flow. For Rayleigh numbers 
above approximately 8 x 1 08(JPr;a3) travelling wavelike motions grow 
up the hot wall of the slot and down the cold wall. These waves grow most 
readily midway between the two ends. At higher Rayleigh numbers when 
the wave amplitude is finite the phase of successive wavefronts becomes 
increasingly random until near Ra = 1.0 x I O 1 O , ' a 3  an intense entrainment 
and mixing process starts between the wall region and the interior. The 
middle portion of the interior is then turbulent and the extent of the region 
grows further toward the ends as the Rayleigh number increases. 

As mentioned earlier, Gill [28], guided by Elder's experiments, developed 
an analytical model for the convection phenomena in the limit of large 
Prandtl number. He first reduced the complete equations to boundary layer 
form by assuming that the boundary layer thickness is small compared 
with the slot height. In so doing he had to forgo the satisfaction of exact 
boundary conditions at  the ends. He then used an  order-of-magnitude 
argument relating the boundary layer and core quantities to show that the 
core strearn function and temperature depended on the vertical coordinate 
only. Thus, the vertical motion is confined to the boundary layers and the 
transfer of heat from one vertical wall to the other is mainly by convection. 

Gill obtained an  approximate solution of his boundary layer equations 
by means of a generalization of a modified Oseen linearization which 
coupled the boundary layer and core solutions. The linearizing functions 
were functions of the vertical coordinate such that the boundary layer 
equations retained only derivatives in the horizontal direction. The model 
which he analyzed is based on the flow phenomena described by Elder [27], 
particularly with regard to entrainment, which is presented above. Gill's 
results agree quite well with Elder's experiments except near the horizontal 
boundaries. Gill's work is particularly significant in that it was the first of 
the analytical treatments which did not assume an  isothermal rotating core. 

It has already been pointed out that the numerical solutions to this 
problem essentially agree with the flow and heat transfer as presented above. 
No details of the numerical papers will be presented herein because they 
dwell on  the intricacies of the particular method used and this is beyond 
the scope of the present paper. de Vahl Davis [29] discusses the limitations 
of the work preceding his and compares the results obtained numerically. 
For example, he mentions that Wilkes' [25] work was limited by stability 
difficulties to a Rayleigh number below a certain value and even then the 
solution is not physically acceptable because the vorticity was used as one 
of the dependent variables and boundary conditions for it are not known at 

- 
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FIG. 16. Average Nusselt number for the square cavity, as  a function of Rayleigh 
number, compared with previous solutions [29]. 0-Poots (L); x-Wilkes (L); 0- 
Elder (I);  A-Wilkes (I) .  

the start. Boundary condition problems were also encountered by Elder [44]. 
To achieve numerical stability he required the normal gradient of vorticity 
to vanish on the horizontal boundaries of the cavity. This arbitrary condi- 
tion (which has no physical justification) was claimed to affect only the end 
regions. However, since almost all the results are for a square cavity the 
numerical results are of limited accuracy. Some quantitative comparisons 
are also presented by de Vahl Davis and his results agree very well with 
those of Poots [20] and Wilkes [25] whereas Elder’s results differ appreciably 
(see Fig. 16). 

The curves determined by de Vahl Davis are distinguished in Fig. 16 by 
two symbols. The first (letter) denotes the thermal boundary condition on 
the horizontal ends; the I indicates that the ends are insulated and L indicates 
a linear temperature variation across the cavity at the ends. The second 
symbol (number) denotes the finite difference approximation, e.g., 3 is a 
three-point approximation, 5 a five-point one, etc. The most notable feature 
of the results is their variation with the finite difference approximation used. 
This variation is more apparent in the heat transfer results than in any 
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other. It should be noted that the three-point formula gives results that 
agree best with other work. 

Newell and Schmidt [45] obtained numerical solutions to investigate 
more fully the effects of aspect ratio. Their calculations were made for a 
Prandtl number of 0.733. They then compared their results with those dis- 
cussed above and, in addition, with those of Han [46] and MacGregor and 
Emery [47]. The various expressions for the average Nusselt number based 
on the slot width can be written as 

A summary of the various expressions of the form of Eq. (30) determined 
for a square lid = 1 and rectangular cavities is presented in Table 11. 

TABLE I1 
AVERAGE NUSSELT NUMBER RELATIONS 

Reference A B C [Id 

1 
1 
1 

Newell and Schmidt [45] 0.0547 0.397 - 

Han [46] 0.0782 0.3594 - 

Elder [44] 0.23 I 0.25 - 
Newell and Schmidt [45] 0.155 0.315 -0.265 2 < I/d < 20 
Eckert and Carlson [24] 0.199 0.3 -0.1 2 < I/d G 20 
Jakob [38] 0.18 0.25 -0.111 2 < I/d < 20 
MacGregor and Emery [47] 0.25 0.25 -0.25 2 < I/d < 20 

Some calculations for specific values of I /d are also presented in Fig. 17. 
It can be seen that the exponent on the Grashof number determined by 
Newell and Schmidt is higher than those given by all previous investigators. 
The exponent on Ild which they found is also higher than those obtained by 

FIG. 17. Average Nusselt numbers versus Grashof number [45]. ___ Han (46); 
Jakob (38). C--l/d = 1 ; i -l/d = 10; [-J-//d = 20. _ - -  Eckert and Carlson (24) ;  
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Jakob or Eckert and Carlson but is of the same order as that of MacGregor 
and Emery. 

For the square a comparison of Newell and Schmidt’s equation with 
those of Han and Elder indicates similar Grashof number trends. MacGregor 
and Emery have used their expression with / ’d = 1 to compare their 
numerical and experimental results. However, the equation of Newell and 
Schmidt agrees better with the data so that the validity of MacGregor and 
Emery’s expression for a square is questionable. 

For a more graphic comparison of results. calculations made by Newell 
and Schmidt are shown as points on Fig. 17 and the results of Eckert and 
Carlson, Jakob, and Han as lines. If Newell and Schmidt’s results are used 
as a reference the good agreement between them and Han’s work for a 
square is readily apparent. The results of Eckert and Carlson lie below 
them for lid = 10 and above then1 for /,ld = 20. Thus, good agreement 
between them might be expected for / /d midway between those two values, 
which is the range over which Eckert and Carlson’s results were intended 
to apply. Jakob’s results lie below all the others. 

From the above heat transfer rates through air enclosed in a rectangular 
slot can be calculated for various conditions. The agreement with experi- 
ments is tolerable. 

111. Horizontal Circular Cylinder 

A detailed review of the work done on the boundary layer flow in a 
horizontal circular cylinder will be most instructive for a number of reasons. 
Considerably more analytical study of this problem has been made, only 
two parameters are associated with this configuration because the aspect 
ratio does not enter, there are no corner effects (and, therefore, no mixed 
boundary conditions), and the inclusion of a heating phase angle permits a 
complete variation of the thermal boundary conditions from heating-from- 
the-side to heating-from-below. In the last regard recall that the rectangular 
cavity was restricted to heating-from-the-side. Also, from the Introduction 
it appears that the core configuration is strongly affected, i t  not determined, 
by the thermal boundary condition. Thus, some insight should be obtained 
how the core configuration varies with the thermal boundary condition. 

A. ANALYSIS 

Consideration is given to the large Rayleigh number flow, with the 
Prandtl number large and the Grashof number of unit order of magnitude. 
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1. Basic Equations 

In this case of steady natural convection of a very viscous (large Prandtl 
number) fluid the Boussinesq approximation is made so that density varia- 
tions only modify the body force term. For the cylindrical geometry depicted 
in  Fig. 3 the natural choice of coordinates is a plane polar system with 
space points located by (R, 0) and the corresponding radial and azimuthal 
velocities are U and V, respectively. 

The driving force for the flow is due to a nonuniform temperature distri- 
bution around the cylinder circumference. This distribution is given by 

T(Ro,U) = To + ATCOS (0 + 4). (31) 
The basic equations in dimensionless form expressing the conservation 

of momentum and energy, respectively, are, in terms of a stream function 
which satisfies the continuity equation identically: 

The corresponding boundary conditions expressing the impermeability of 
the wall, the no-slip condition, and the imposed temperature distribution 
are, respectively, 

.?I), (7r = ( ~ $ / d O  = 0 at r = I ,  (344 

T = cos(0 + 4)  at r = 1. (34b) 
The relations between the dimensionless and dimensional (denoted by 
capital letters) variables are 

R = Rot-, 0 = 0,  Y = r'Gr$, T = ( T  - To)/AT. (35) 

The specific nondimensionalization of the stream function as given in Eq. 
(35) is obtained by equating viscous and body forces which seems to be the 
most reasonable choice for the large Prandtl number unit-order Grashof 
number case under consideration herein. The frictional heating parameter, 
K, discussed by Ostrach [5] is much smaller than unity for the present case 
so that the viscous dissipation (last term in Eq. 33) can be neglected. 

For this case of large Prandtl number and unit-order Grashof number 
the boundary layer character of the problem is evident from the energy 
equation, Eq. (33), because the conduction term with the highest order 
derivatives is multiplied by a small quantity (IiPrGr). This indicates that a 
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region must exist in  which derivatives of temperature become so large that 
there will be a balance between the conduction and convection terms so 
that all the boundary conditions can be satisfied. This region is adjacent to 
the cylinder wall and will vary in depth inversely with the Prandtl number. 

By the same reasoning, the conduction term should be negligible compared 
to the convection terms in the core region. 

2. Solutions 

a. The Core Region. If the conduction term is neglected in the interior 
region, as was argued above, Batchelor’s method of proof [21] can be 
modified to show that the core must be isothermal 

T = r = r0 = const. 

if it is not stagnant and no bounding streamlines pass through the boundary 
layer. (See Menold and Ostrach [33] for details.) In Menold and Ostrach 
[33] the other possibility (not considered by Batchelor) is also considered, 
viz., that the core is stagnant. I t  is then found that the interior temperature 
distribution could correspond to that for a stratified fluid. Thus, it appears 
that two core configurations are possible. The delineation of the conditions 
for the existence of each requires a separate study. For the present the 
rotating core configuration will be the one studied as it was in  earlier works. 

For this case, then, the buoyancy term will vanish identically from the 
equation of motion, Eq. (32), in the interior region. 

6. The Thermal Boundary Layer. Because of the boundary layer character 
of the problem further simplification of the equations can be obtained by 
the usual scaling transformations of boundary layer theory. For the present 
problem these are 

p = (1 - r)Pr1/4, $, = P~--~’~j’(p,  O), r = r(p, 0). (37) 

The nonlinear inertia terms in the equation of motion can also be shown 
to be negligible for this case of large Prandtl number. For details of these 
steps and others in  the analysis and solution which have to be omitted 
because of space limitations see Menold and Ostrach [33]. The linearization 
of the equation of motion is one of the major simplifications obtained by 
the choice of a large Prandtl number fluid. 

Even with the simplifications indicated above, the solution of the boundary 
layer equations is still a formidable task. Therefore, to facilitate the solution 
the modified Oseen linearization will now be applied. This permits the use 
of a superposition technique so that the stream function, $, and the tem- 
perature, r ,  can each be taken as the sum of two variables, one describing 
core conditions and the other, boundary layer conditions. Each of these 
variables must satisfy the differential equation valid in the appropriate 

(36) 
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region. The solutions for the two parts of $ and T ,  respectively, can be 
matched at the boundary r = 1 by means of the boundary conditions on 
the complete functions. By this superposition the difficulties associated with 
the interaction between the interior and boundary layer regions are avoided 
and the problem is reduced to a matching of two solutions at the cylinder 
wall. 

Before applying the modified Oseen linearization recall that the inertia 
terms in the equation of motion and the viscous dissipation are negligible. 
Therefore. the basic equations are: 

The modified Oseen approximation consists of making the substitution5 

d $ ’ i r  = -8, ?T/% = 0 (40) 
in the energy equation. The con\tant, c”, is to be evaluated a posteriori by 
some suitable means, such as a n  averaging process. Experiments have 
sometimes been used to  evaluate the constant. The energy equation thus 
becomes 

The two basic equations, (38) and (41), are both linear and now also 
uncoupled. 

The stream function and the temperature are next written as 

$(r,  0) = $o(r,  (1) + *1(r, oh 
T ( r 7  0) = T o  +  TI(^, 01, 

(42a) 
(42b) 

where $,, must satisfy the equation valid in the core and since the core has 
been shown to be isothermal so is a constant. The functions with the sub- 
script 1 must satisfy the boundary layer equations. The boundary conditions 
imposed on these separate parts will be such that the total function given 
by their sum exhibits the proper behavior at the cylinder wall. 

Use is now made of the boundary layer scaling given by Eq. (37) to write 
Equation (42a) as 

$(r,  0) = $ d r ,  0 )  + Pr-3’4j(p, 0) (43) 
In the isothermal core the buoyancy terms i n  Eq. (38) vanish identically 

so that $o must satisfy 
v’v2$o = 0. (44) 
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The equations for f ' and  t l  are found from Eqs. (38) and  (41) by applying 
Eq. (37) and then Eqs. (43) and (42b), respectively. The resulting equations 
for the boundary layer are 

a4f d T 1  
- + cos 0 - = 0, 
3P4 aP 

a z T  dr 1 

d P 2  20 
- - c C r -  = 0, 

where 
c = Prl/'c', 

(45) 

(47) 
with c being of unit order. 

given by Eq. (34) the following relationships result: 
When Eqs. (43) and (42b) are substituted into the boundary conditions 

Pr-'''(t?~~dp),~,, = ( C ' $ , ; ( ? T ) ~ =  , (474  

Pr- 3'4(dj:7dO),, = = - (z$o = , (47b) 

T I  =: COS(0 + 0) - T O  at p = 0. (47c) 

In  order that the interior be described solely by and T~ it is also required 
that the boundary layer contributions 1' and T ,  both approach zero as p 
approaches infinity, i.e., 

f ' +  0, T I  + 0 ;1S I) + 03. ( 4 7 4  

The problem as it now stands is considerably simpler and is also uncoupled 
as a result of the modified Oseen linearization. 

The first solution to be determined is that for the interior stream function, 
$o,  which is described by the biharmonic Eq. (44). The general solution 
valid in  the region 0 6 r < I ,  0 6 0 < 2n is 

T 

~ ) ~ ( r ,  0 )  = 1 [ ( A ,  cos n U  + B, sin ii0)r' + (C,, cos n0 + D,, sin t10)r"+~] 
n = O  

(48) 

where A,,, B,,, C,, and D, are constants. 
Since the energy equation in the boundary layer region has been uncoupled 

from the equation of motion the temperature can be found directly by 
separation of variables. Thus, upon satisfaction of the boundary conditions, 
Eqs. (47c) and (47d), 

T l ( p ,  (I) == r-"''[( cos ( O  - i p )  - y sin ( O  - X p ) ] ,  (49) 

where 1 = ,,/cGr,'2, = cos 0, and y = sin 4. In  the course of satisfying 
the boundary conditions it is found that T" = 0 which means that the 
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interior assumes the average temperature To that appears in the boundary 
condition, Eq. (31). 

The solution for T~ is now used in the second term of Eq. (45). Four 
integrations with respect to p and application of the boundary condition, 
Eq. (47d), yield 

- 
e - l P  

4 A 3  
f ( p ,  8 )  = - cos O[(t + y )  sin (0 - l p )  - ( 5  - y )  cos (0 - &I)]. (50) 

The conditions, Eqs. (47a) and (47b), together with the condition that 
$(I ,  0) = 0 are then used to determine the constants. Thus the complete 
solutions are 

$(r,  0) = A ,  + (Co + A ,  cos 20 + B, sin 20)r' 

1 

42 + (C, cos 20 + D, sin 2U)r4 + 7 c- ' (~-~)cos  0 

( ( 5  + y) sin [ O  - ).(I - r ) ]  - ( 5  - y )  cos [ O  - A(1 - r ) ] } ,  (51) 

(52)  ~ ( r ,  e)  == e - A ( l - r ) { t  cos [O  - ].(I - r ) ]  - y sin [O - ].(I - r ) ] } ,  

where 1 IE Pr1I4 2 and 

The boundary layer contributions to these total solutions are easily recog- 
nized by the exponential factor. Explicit expressions for the velocity com- 
ponents can, of course, be obtained by differentiating the stream function I). 

It should be noted that the modified Oseen constant still appears as a 
parameter in the solution through A and is yet to be evaluated. 

Since only a thermal boundary layer exists in the present problem it is 
not necessary to separate the stream function into two parts. The complete 
equation of motion was also solved directly by Menold and Ostrach [33] 
and they showed that the solutions differed only slightly from those given 
above so that the additional mathematical complexity is not warranted. 
However, the direct solution is of interest because it was shown to represent 
a first improvement on the asymptotic solution presented above, i.e., the 
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direct solution is valid for large but finite Prandtl numbers whereas the 
other is valid asymptotically as the Prandtl number becomes infinite. 

c. Ecaluatiotr oj‘ rhc Mo&J?~~LI O.~ccti Cotistnnt. Because there is practically 
no experimental information from which a value for the modified Oseen 
constant, c, could be obtained, some other method must be developed. 
This i n  turn introduces a certain degree of arbitrariness since no unique 
method is readily apparent. 

The modified Oseen technique was introduced in  order to simplify the 
convection term in the energy equation. Therefore, the resulting solutions 
satisfy the complete energy equation only approximately. An estimate of 
the accuracy of these solutions could be obtained by substituting them into 
the complete energy equation (39) with the convection term unaltered. A 
direct indication of the error is the magnitude of the departure of the right 
side of this equation from zero. This error, of course, would be a function 
of both r and 0 and the dimensionless parameters, and, most importantly, 
it would also depend on c. The error will be denoted by c(p, 8, c, Gr, 4). 
Thus, if c were integrated over the boundary layer and the result set equal 
to zero an equation should be obtained relating the modified Oseen constant, 
the Grashof number, and the phase angle from which the constant could be 
determined. However, the particular form of the 0-dependence in the 
solutions causes all terms in the integrand to vanish identically. Thus to 
obtain nontrivial results it is necessary to  weight the integrand with some 
function of 0, here designated by U’(0). The choice of W(0) is completely 
arbitrary provided that it leads to nontrivial results for the integration. 

In the present work the simplest weighting function which selects both 
odd and even 0-dependence i n  the integrand is 

W(0)  = cos U + sin U E W , .  ( 5 3 )  

The resulting expression for the modified Oseen constant is 

Note that this expression for c becomes infinite as the phase angle, 4, 
approaches zero ( y  = sin 4 --f 0). Weinbaum’s evaluation [31] also displayed 
the same behavior and i t  was at  first thought that this was the reason for 
his difficulty in treating the heating-from-the-side case (4  = 0). 

Since the choice of a weighting function is completely arbitrary it is of 
interest t o  see how the constant will be affected by a different choice of a 
weighting function. Thus, a second weighting function with the required 
properties is taken to be 

W,(O) = c0s3 0 + sin3 0. ( 5 5 )  
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The corresponding expression for the modified Oseen constant is 

c = [(1/24yGr)(9 + 6y2 + 25y)]1’2 = c2. (56) 

This also becomes infinite for a phase angle of zero. Thus, neither of these 
can be used to investigate the character of the solutions as 4 approaches 
zero. A third approach is therefore developed to  overcome the two undesir- 
able aspects of the above, viz., the arbitrariness of the choice of the weighting 
function and the singular behavior of c at 4 = 0. This approach consists 
of integrating the square of the error over the boundary layer. Since the 
resulting integral will be positive definite the constant c can be chosen such 
that the integral and, hence, !he error is a minimum. The result obtained 
in this way is 

c = [(1/120Gr){5 - 13y + [(t - 1 3 ~ ) ~  + 100 S(5, y)]1’2)]1’2 = c3 (57) 
where 

S(5, /3) 9 - 6y2 + 4657 + 12052y2. 

This result has no singularities over the entire range of 4 values and requires 
no arbitrary weighting function. 

A comparison of modified Oseen constants obtained from the three 
schemes can be made from Fig. 18. Their values differ appreciably, in 
general. The effect of the value of c on the quantities of physical interest 
will be discussed subsequently. 

t.0 

0.8 

0.6 

C 

0.4 

0.2 

FIG. 18. The modified Oseen constant versus phase angle for various evaluation schemes 
(Gr = 1) [331. c,-W,(8) = cos 0 + sin 8 ;  c,-W,(@ 7 c0s3 8 -t sin3 0; c3-rninimiza- 
tion. 
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B. RESULTS AND DISCUSSION 

1. Temperature and Velocity Solutions 

In this section the general form of the solutions and the effect of the 
parameters on them will be presented. Typical temperature and tangential 
velocity distributions for 4 = 45" are presented in Figs. 19 and 20. These 
were computed using cl, from Eq. (24), because it was simplest. Note that 
T is antisymmetric and u is symmetric at 0 + 180". 
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FIG. 19. Temperature profiles at various 0 positions [33]. [ W(0) = cos 0 + sin 0, 
Pr = lo5, Gr = 1, 4 = 45".) 

The boundary layer character of the temperature is clearly shown in 
Fig. 19 because T is essentially zero for r c 0.5 for all values of 8, whereas 
relatively large changes appear in the region close to the wall (r -P 1). Thus, 
the isothermal core is essentially bounded by the circle r = 0.5. 

Also indicated on that figure is the fact that the temperature changes 
at the edge of the boundary layer are out of phase with those near the wall. 
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If the edge of the boundary layer is taken to lie within 0.5 < r < 0.7 then 
it can be seen that for increasing 0, the temperature at the edge of the 
boundary layer is increasing while that of the fluid near the wall is decreasing. 
This behavior is caused by a diffusion of the thermal effects of the wall 
through the fluid as the fluid moves through increasing values of 8. The 
thermal diffusion process is evidenced in a qualitative way by the fact that 
as 0 increases from 0" to 135" the maximum temperature for each profile 
occurs at smaller values of the radius, r .  As expected, the thermal boundary 
layer shrinks closer to the wall with increasing Prandtl numbers. 

The action of this overall temperature distribution in driving the flow is 
indicated in Fig. 20 by the evolution of the velocity profiles between 8 = 0" 

FIG. 20. Velocity profiles at various 8 positions [33]. "'(0) = cos 8 + sin 8, Pr = lo5,  
Gr = I ,  4 = 4 5 O . I  

and 8 = 135". The maximum fluid velocities occur in the vicinity of 8 = 0" 
and 180". (The velocity distributions at 8 = 0" and 180" are identical 
because of symmetry.) 

It is important to note that the velocity in the core (i.e., the region 
encircled by r = 0.5) is not zero everywhere. Thus for 4 = 45" the com- 
puted temperature and velocity distributions are compatible with the 
assumed core configuration. The effect of Prandtl number is the same for 
the \/elocity distribution as it was for the temperature. Note that the tangen- 
tial motion is of the order of Pr-'" which agrees with the result obtained 
earlier. 

2 .  Streamlines 

Streamline patterns are plotted in Figs. 21 through 23 for 4 values of 
45", 223", and 0". The calculations were made using cj  because it was not 
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FIG. 21. Streamline pattern for 4 = 45" [33]. (Pr = lo5, Gr = 1, c from minimization.) 

singular. The pattern for Cp = 45 O is representative of those for phase angles 
between 90" and about 30". The streamlines are closed and elliptic in shape 
with centers about the origin. The major axis rotates in a counterclockwise 
direction when 4 decreases. 

For Cp = 22+, Fig. 22, two regions appear in which the streamlines are 
closed but do not enclose the origin. This result might be quite possible 
from a physical point of view. However, it can be seen in Fig. 22 that a 
definite tendency now exists for the streamlines centered about the origin 
to pinch in towards the origin. This in turn means that there is a danger of 
violating the assumption used in proving the interior to be isothermal that 
the boundary streamline does not pass through the boundary layer region. 
In other words, as the streamlines pinch closer to  the origin, more boundary 
layer streamlines curve closer to r = 0 and the result is that the region in 
which the isothermal proof is valid becomes negligible compared to the 
entire flow field. In Fig. 23 the pattern for Cp = 0" (heating from the side) 
is shown and it is rather irregular. Based on this picture and the above 
argument it can be concluded that the temperature and velocity solutions 
are not compatible with each other when Cp = 0". Thus, the difficulty with 
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FIG. 22. Streamline pattern for 4 = 22.4' [33]. (Pr = lo5, Gr = 1, c from minimiza- 
tion.) 

this case persists even when the mathematical problems are resolved and it 
would seem that the physical situation is more complicated than the present 
theory has allowed. In view of the above it can be concluded that the 
problem is properly described by the solutions presented herein for phase 
angles greater than 20" to 30". Although the solutions for heating from 
below, 4 = 90°, are consistent they are not presented for reasons to be 
given later. For configurations near the heating-from-the-side case an 
approach different from the present one will have to be developed. 

3. Effect q j  the Modijied Oseeri Constatit 

The effect of the value of c on temperature and tangential velocity is 
shown in Figs. 24 and 25 for q5 = 45". Since c plays the role of a parameter 
in the solutions their shapes will not be affected by changes in its value. 
This is clear from the figures. I t  is also obvious from the figures that the 
temperature is much less affected by the value of c than is the tangential 
velocity. This is fortunate since in natural convection problems the tempera- 
ture field and heat transfer are of prime importance. 
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GRAVITY 

FIG. 23.  Streamline pattern for 4 = 0" [33]. (Pr 7 los, Gr : I .  c from minimization.) 

FIG. 24. Effect of the modified Oseen constant on the temperature [33]. (Pr = los, 
Gr = I ,  + = 45". e = - 4 5 " ~  - - - c  = C ,  = 0.595 [w,(e) = cos 0 -t sin 01; c = c2 
= 0.875 [W2(@ = c0s3 0 t sin3 el; c = C3 = 0.757 (minimization). 
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FIG. 25. Comparison of tangential velocities from solutions with experimental results 
for 4 = 45" [33]. (Pr = 17,710, Gr = 1.012.) __ , solution using c = C1; - -, 
solution using c = C,; - - -, solution using c = C,. O-experimental point for 8 = 0"; 
A-experimental point for 0 = 180"; 0-experimental point for 8 90"; a e x p e r i -  
mental point for 0 = 270". 

C. EXPERIMENTS 

In the above analysis considerable mathematical simplification was 
obtained by linearizing and uncoupling the equations that describe the 
physical phenomena and one might wonder whether the solutions properly 
describe the physical aspects. Furthermore, a number of other questions 
have been raised such as what is the overall nature of the flow as a function 
of the phase angle 4, and which of the methods of finding the modified 
Oseen constant leads to the best results. Therefore, a direct experimental 
analog of the mathematical model was made to try to answer these questions. 

1. The Apparatus 

As shown in Fig. 26 the test vessel consisted of an 8-in. length of copper 
pipe with an inside diameter of 5 in. and a $-in. thick wall. This particular 
length was the maximum possible, consistent with the photographic scheme 
used for visualizing the flow. The ends of the vessel were sealed with &in. 
thick clear plexiglass plates. The entire vessel was supported beneath the 
aluminum end rings by two roller bearings at each end so that the vessel 
could be rotated to vary the phase angle. 

The maximum and minimum temperatures for the cosine wall distribution 
were maintained by two heat exchangers that were soldered into circular 
slots milled axially into the wall. Distilled water was circulated through 
these heat exchangers with the temperatures controlled to within f 0.01 O F  
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FIG. 26. The test cylinder [33]. 

by two Haake (Model Ne) constant temperature circulators. The wall tem- 
perature distribution between the maximum and minimum points was 
controlled by a series of heaters and coolers soldered to the outer wall in 
the locations shown on the figure. The heaters were made from copper bars 
on which nichrome wires, properly insulated, were attached lengthwise. 
Distilled water was bled from the Haake thermostats for the coolers. More 
details on the specific sizes and construction can be found in Menold and 
Ostrach [33] and Sabzevari and Ostrach [35].  In this way it was possible to 
maintain indefinitely a circumferential temperature distribution to within 3 % 
of a cosine, with a difference of about 4°F between the maximum and 
minimum temperatures. 

The entire vessel was insulated from the surroundings and the tests were 
in addition conducted in a special room in which the temperature and 
humidity could be maintained constant. 
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The test fluid in these experiments was a silicone oil with a kinematic 
viscosity of approximately 2000 centistokes. The flow visualization and 
measuring technique consisted of tracking with a camera the motion of 
particles suspended in the oil. A light soiirce was placed at one end of the 
vessel and a camera at the other which was focused at the vessel midplane. 
The motion of the particles which were essentially neutrally buoyant was 
determined by making a series of three exposures on the same film. The 
time intervals were measured by a stopwatch. The velocity could be deter- 
mined by measuring the distance traveled in the interval. The camera could 
move to cover different parts of the cross section at the midplane. Tempera- 
tures were measured by four manganin-constantan thermocouples inserted 
through probes. (See Menold and Ostrach [33] and Sabzevari and Ostrach 
[35] for more details.) 

2. Experimental Observations 

Experimentally determined velocity distributions for 4 = 45" and values 
of the Prandtl and Grashof numbers respectively of 17,710 and 1.012 are 
presented in Fig. 25. From the photographs of the particle tracks it was 
evident that the flow streamlines agreed well with the picture predicted 
analytically, Fig. 21. Furthermore, the good agreement between experi- 
mental points 180" apart in the 0-direction indicate that the velocity profiles 
were quite symmetric over the entire diameter. From Fig. 25 it can be seen 
that there is good agreement between the experimental velocities and the 
calculations based on the modified Oseen constant that yields the lowest 
values for the velocities. The experimental temperature data are closest to 
the theoretical curves computed with cj (obtained by the minimization 
method) (see Sabzevari and Ostrach [35]) .  However, the temperature dis- 
tributions are much less sensitive to the manner in which the modified 
Oseen constant is evaluated. Therefore, the best c for an overall picture of 
flow and heat transfer should be selected on the basis of the good agreement 
between the tangential velocity data and the lowest theoretical curve. For 
heat transfer results alone use of the constant determined from the mini- 
mization scheme should be satisfactory. 

When the fluid was heated from the side, 4 = O ' ,  no cellular pattern 
like that for 4 = 45" was found, but, rather, a relatively stagnant core 
was observed in which no recognizable flow pattern exists. Thus, even for 
the very viscous fluid used in this experiment the tendency to form a stagnant 
core is indicated when the heating is directed from the side. Investigation 
of the temperature field for this case indicated that this stagnant region is 
thermally stratified (see Fig. 27). The formation of this stagnant core appears 
to result from the phase difference between the fluid temperature in the 
boundary layer and that imposed on the walls that was noted from Fig.19. 
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FIG. 27. Temperature distribution along horizontal and vertical diameters for phase 
angle 4 = 0 [35]. (Gr = 2.40, Pr = 18,600.) O-horizontal, 0 = 0"; 0-vertical, 0 = 90". 

When the heating is from the side, 4 = 0", this phase difference is such 
that the outer edge of the boundary layer reaches its maximum temperature 
near the top of the vessel (0 = 90") and its minimum near the bottom 
(0 = 270"). In this way hotter fluid accumulates near the top of the core 
and colder fluid near the bottom to form a stably stratified core. This core 
acts like a "weighted disk," (Martini and Churchill [22]), and resists the 
viscous torque of the fluid circulating around it. No comparison between 
theory and experiments can be made for this case because the modified 
Oseen solution is not meaningful. It is now clear that the difficulties for this 
case, 4 = 0", are due to the different physical configuration and, therefore, 
any analytic treatment must permit the possibility of a stagnant and ther- 
mally stratified core. 

The final case investigated experimentally was the one in which the 
heating was from below, 4 = 90". This was done to see if the flow pattern 
was in the form of a single cell or a double cell. However, photographs 
taken over long periods of time (8 to 10 hr) indicated that no steady pattern 
established itself for this configuration. Instead, the fluid at one instant 
showed a tendency to form a double cell, at another instant a tendency to 
form a single cell, and usually had superimposed on it a net upward flow 
which indicated that axial cells were also present. The explanation for this 
behavior is associated with the fact that in this configuration the fluid is 
thermally unstable in that the heating from below causes heavier fluid to 
be above lighter fluid. This instability has been discussed by Gershuni and 
Zhukhovitskii [48] who have indicated that both the single and double cell 
patterns are almost equally probable to occur. Furthermore, Ostrach and 
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Pnueli [4!>] and Sherman and Ostrach [50] have shown that solid boundaries 
exert a stabilizing influence on the problem so that motion is first to be 
expected in the longest dimension. Since in the present experiments the 
length was the longest dimension the axial cells should appear before the 
planar ones. If the length were shortened by moving the end plates closer 
together (to a distance less than the diameter) to inhibit the axial cells then 
three-dimensional effects from the end-wall boundary layers would most 
likely preclude the occurrence of the pure planar cells. It is for this reason 
that a two-dimensional treatment of the heating-from-below case does not 
appear to be meaningful. 

D. ANALYSIS FOR HEATING-FROM-THE-SIDE 

Although the work of Menold and Ostrach gives a good description of 
the phenomena when the heating phase angle is not close to zero (heating- 
from-the-side) the analyses discussed to this point do not predict the thermal 
stratification for heating-from-the-side and give no insight into the role of 
the heating phase angle, 4, on the degree of core stratification. Therefore, 
Hantman and Ostrach [36] reconsidered the problem in order to obtain a 
proper description for the observed phenomena. 

Two specific aspects of the previous work on the circular geometry 
warrant reevaluation. Firstly, the core streamlines were always assumed to 
be closed. Therefore, it would seem to be advisable to formulate the problem 
such that no (I priori statements need be made regarding the nature of the 
core flow or temperature distribution. Secondly, the modified Oseen 
linearization decoupled the core variables from those in the boundary layer. 
Since the core is driven by the boundary layer flow a stronger coupling 
might be anticipated. This point is examined through the redevelopment of 
the core and boundary layer equations. 

The geometric configuration, boundary conditions, and fluid (large 
Prandtl number) are identical to those of Menold and Ostrach for these 
considerations. Thus, the one-point boundary value problem defined by 
Eqs. (31) to (35) is the starting point for this new analysis. The complete 
equations as they stand are nonlinear and coupled so approximate solutions 
will have to be obtained. 

The reasons for studying these full equations should be quite apparent. 
The equations are a well-defined set with no apparent singularities. The 
circular geometry presents no difficulties (e.g., no corner regions) and the 
boundary conditions are easily treated. Thus, if an approximate analytical 
technique would yield solutions to this one-point boundary value problem 
that properly describes the physics then no boundary layer orderings or 
decisions about the nature of the core at the outset would be needed. 
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Various generalizations of the modified Oseen linearization were tried 
but they all led to temperature distributions which yield an isothermal core. 
These solutions which were made with no assumptions about the core were 
shown to be equivalent to Menold and Ostrach’s and, hence, are valid for 
some range of heating angles away from C#I = 742 but not near 4 = 0. These 
solutions give further insight into the physical mechanisms, in particular, 
the phase difference between the imposed wall temperature and that at the 
outer edge of the boundary layer (see Hantman and Ostrach [36] for more 
details). 

Since the desired results (solutions for heating-from-the-side) could not 
be obtained by the approach described just above a return to a boundary 
layer treatment was necessary. However, now the method of matched 
asymptotic expansions, described by Van Dyke [51], was formally applied 
to derive the asymptotic equations in the limit of large Prandtl number and 
unit-order Grashof number. Without going into details, the boundary layer 
equation for vorticity transport is identical to Eq. (45) and that for energy 
transport is similar to Eq. (46) without the Oseen linearization, i.e., both 
convection terms remain. However, the dependent variables now are the 
first terms in the asymptotic series for the stream function and dimensionless 
temperature difference. 

Continuation of this approach for the core leads to the result that there 
can be no convection of energy in the core which means that there is no 
diffusion of heat in  the core and the streamlines and isotherms must coin- 
cide therein. Furthermore, it is found that there can be no horizontal tem- 
perature gradients perpendicular to the body-force direction. Thus, the 
buoyancy force cannot act in the core. These results have been obtained 
with no assumptions concerning the core streamlines or isotherms. It should 
be noted, however, that these results imply that two core configurations 
are possible. For an isothermal core Menold and Ostrach [33] used a condi- 
tion equivalent to that expressing the coincidence of the streamlines and 
isotherms to show that the core stream function satisfies the biharmonic 
equation (with no buoyancy). Another interpretation of the fact that there 
are no horizontal temperature gradients which is appropriate for a stratified 
core is that the core temperature is a function of the vertical coordinate 
alone. 

The results for the core follow independently of the wall temperature 
boundary condition ; in particular, independently of the heating phase angle, 
4. The direct ordinary procedure used here in no way makes a distinction 
in the core between, say, the extreme cases of heating from below and 
heating from the side, although experimental evidence does appear to 
indicate important distinctions. Therefore, since the boundary layer flow 
must, in some sense, affect the core flow the boundary conditions can affect 
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the core only implicitly through their direct influence on the boundary layer. 
To obtain uniformly valid solutions the inner (boundary layer) expansion 

must be matched in an overlapping region to the outer (core) expansion. 
Here, again, two choices exist corresponding to the two different possible 
core configurations. For the isothermal rotating core the boundary layer 
and core temperatures, azimuthal, and radial velocity components are 
matched. For the stratified core the additional condition that the tempera- 
ture is a function of the vertical coordinate alone is imposed. To match the 
stream functions for that case the mass flow rates in  the core and 
boundary layer are equated. 

From this matching the order of magnitude of the various flow quantities 
can be readily determined. For the rotating isothermal core configuration 
it is found that the azimuthal velocity component in both the core and 
boundary layer are of the same order of magnitude (Prd1l2). However, the 
radial velocity in  the boundary layer is of the order of Pr-314 whereas that 
in the core is of the order of Pr-''2 so that the radial velocity in the boundary 
layer is of lower order than in the core. In the case of a stratified core the 
highest order velocity is the azimuthal component in the boundary layer. 
All other velocity components are of lesser magnitude by the factor Pr-'14. 
Thus, for the rotating isothermal core the flows in the boundary layer and 
core are of the same order. In contrast, for the thermally stratified core, 
both velocity components in the core are of lower order than the azimuthal 
component in the boundary layer so that for increasingly large Prandtl 
number the core tends to stagnate relative to the boundary layer. This is in 
accord with the experimental observations of Sabzevari and Ostrach [35]. 

To sohe the boundary layer equations so obtained for a stratified core, 
Hantman and Ostrach [36] linearized the energy equation in a new way. 
Both radial derivatives in the convection terms are retained and, rather 
than setting their coefficients equal to constants as in the modified Oseen 
method, the coefficients are now taken to be functions of the azimuthal 
angle which are related to the core temperature and stream function. This 
azimuthal dependence of the coefficients permits the boundary layer thick- 
ness to be determined explicitly as a function of the azimuthal angle. Since 
this linearization retains both convection terms in the energy equation the 
two way coupling between that equation and the vorticity equation is main- 
tained in the linearized form. Also, because this linearization introduces 
core variables into the boundary layer equations the solution for the core 
and boundary layer variables are coupled. 

The detailed determination of the solutions is rather extensive and, there- 
fore, will be omitted. These solutions describe a flow field with a boundary 
layer contribution which is circumferentially oriented and which joins a 
horizontal crossflow in the core which is weaker than the boundary layer 
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flow. This core flow has opposite directions in the upper and lower halves 
of the cylinder. In  the lower half the flow is from left to  right and in the 
upper half from right to left. This implies that the boundary layers in the 
first and third quadrants eject fluid into the core and those in the second 
and fourth quadrants entrain fluid from the core. 

The solutions obtained are not valid near the ends of the vertical diameter 
and also when the heating phase angle approaches 7r/2 (heating from below). 
Extensive discussion of the mathematical and physical reasons for the 
breakdown of the solution under those conditions is presented by Hantman 
and Ostrach [36]. Thus, the results obtained in  this way are meaningful 
only for heating angles near zero (heating from the side). In this range the 
indicated behavior is in agreement with experimental findings. Also, for 
this case the solutions evaluated at the horizontal diameter agree in form 
with Gill's [28] evaluated at the mid-height of a rectangular cavity. 

To summarize, the analysis of Hantman and Ostrach [36] is valid for 
heating phase angles near zero and that of Menold and Ostrach [34] is 
meaningful for heating angles sufficiently greater than zero. However, these 
two analyses and the experiments of Sabzevari and Ostrach [35] indicate 
two different core possibilities but how or when the transition from one 
type to the other takes place has not been determined. Another aspect of 
the problem that requires further consideration is the uniqueness of the 
core configuration for a given heating angle. Specifically, for heating-froni- 
the-side only the stratified core has been observed experimentally. It 
remains to be shown whether an isothermal core (either rotating or relatively 
stagnant) can exist for this situation if the initial conditions are varied. 

E. FURTHER EXPERIMENTS 

In order to gain insight into these questions Brooks and Ostrach [37] 
modified the apparatus used by Sabzevari and Ostrach by changing the 
imposed thermal boundary condition. Rather than having a cosine variation 
around the periphery the temperature at two points 180" apart on the 
cylinder circumference was imposed. This resulted in a sawtooth type of 
distribution but it remained essentially unchanged when the heating angle 
was varied in contrast to the cosine variation. A method was developed to 
trace the streamlines directly. This was done by following both in time and 
space neutrally-buoyant plastic particles through an optical system (see 
Brooks and Ostrach [37] for details). Velocity and temperature measure- 
ments were also made in the same way as Sabzevari and Ostrach. In this 
way more precise information on the intricacies of the motion was obtained. 
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Steady-state results were obtained when the flow was started from rest 
for four values of the heating angle: O", 15", 45", and 60". Temperature 
profiles and streamline patterns are presented for each of these cases. 
Velocity profiles along the vertical and horizontal diameters are presented 
for heating angles of 0" and 45" only. 

................... 
. . . . .  

t 
4 

STREAMILINE INTERVAL BETWEEN POINTS TOTAL TIME 

I I minute 71 minutes 
2 I minute 98; minutes 
3 4 minutes 2 3 5  minutes 
4 8 minutes l00rninutes 
5 8 minutes 86 minutes 

FIG. 28. Streamline pattern for 4 = 0 (from rest) [37]. 

Figures 28, 29, and 30 represent the streamline pattern, velocity profiles, 
and temperature profiles, respectively, when heating is directed from the 
side. From Fig. 28 it can be seen that the motion of the interior "core" 
region consists of two small cells whose centers lie along the horizontal 
diameter. Both cells rotate counterclockwise, as is the motion of all the 
streamlines presented. The time interval between points on streamlines 
1 and 2 is one minute, while on streamlines 4 and 5, it is eight minutes. 
Since the distances between points on streamlines 4 and 5 are, at most, 
the same as the distances on streamlines 1 and 2, the velocities encountered 
on streamlines 4 and 5 are about an order of magnitude less than those 
encountered on streamlines 1 and 2. The shape of the streamlines should 
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be noted in that, at a distance from the center of the cylinder, they are 
elliptical in shape with the major axis being along the horizontal diameter. 
Streamline 2 in particular exhibits an almost horizontal shape except in the 
neighborhood of 0 = 0" and 180". This would tend to agree with the pre- 
diction of Hantman and Ostrach [36] of horizontal streamlines when 
heating is directed from the side. The figure-eight shape of streamline 3 
seems to be the result of the influence of the two small cells pulling the 
fluid towards the center of the cylinder as the fluid approaches 0 = 90" 
and 270". Streamline 1 follows the geometry of the cylinder to a greater 
extent than the other streamlines which is expected since it is closest to the 
cylinder wall. The horizontal nature of streamline 2 is actually intermediate 
between streamlines 1 and 3 where the effect of the two cells as apparent 
in streamline 3 is offset by the effect of the cylinder geometry as apparent 
in streamline 1. The velocity changes along a streamline can be detected by 
the relative spacing of the dots comprising the streamline. Since the time 
intervals between dots are constant for a streamline, greater spacing of the 
dots along a streamline is equivalent to a greater velocity. With this in 
mind, and with reference to streamlines 1 ,  2, and 3, it can be seen that the 
flow is fastest in the areas near 0 = 0" and 180", and slows down in the 
areas near 0 = 90" and 270". The streamline pattern seems to be almost 
symmetrical about the horizontal diameter, but perfect symmetry is not 
present. 

Note that the particles observed could not be chosen with respect to any 
specific values of a stream function. Therefore, the streamline spacing 
presented does not correspond to equal increments of the stream function. 

From the velocity profile along the horizontal diameter, as shown in 
Fig. 29, it can be seen that for values of r less than about 0.6 when 0 = 0" 

r 
1.0 0.0 0.6 0-4 0.2 0 

c 0.5 

I 

,-/- 0 0 2  0 4  0 6  0 8  10 

yoie 0.2 

0.0 

FIG. 29. Velocity profiles for 4 - 0 (from rest) [37]. 0-horizontal diameter; 
rJ-vertical diameter. 
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or 180°, the velocity is very small, as much as an order of magnitude less 
than the maximum velocities encountered. This is an agreement with the 
velocity analysis proposed from the streamline trace. The places where this 
curve crosses the axis, at either side of the center of the cylinder, indicate 
the centers of rotation of the two small cells. This too agrees with the 
streamline trace. The shapes of the curves along both the horizontal and 
vertical diameters agree qualitatively with those found experimentally by 
Sabzevari and Ostrach [35] when a cosine boundary condition was used. 
However, they found no evidence of the two small cells. Consequently, 
their curve does not cross the axis but indicates the velocity to be zero in 
this region. In the area where these small velocities were encountered, the 
time intervals between exposures of the film were two minutes and one 
minute. When smaller time intervals were used, it did appear as if the fluid 
was stagnant. It must be remembered that time intervals of ten seconds 
and five seconds were used in other areas of the cross section. Sabzevari 
and Ostrach used the same velocity measurement technique as was used in 
this work. It is therefore quite conceivable that these two small cells might 
have been present in their work, but went undetected. 

---+--. 
8=180" - --L 8:O' 

8=225" --L 8.450 

I 

(0 0 8  0 6  0 4  0 2  0 0 2  0 4  0 6  0 8  10 
r r 

FIG. 30. Temperature profiles for 4 = 0" (from rest) [37]. 

Figure 30 shows the temperature profiles along four diameters. It is 
obvious from the profile along the vertical diameter that in the central 
portion of the cylinder, the fluid is thermally stratified. The four curves 
are nearly straight lines in  this region indicating constant temperature 
gradients, asjar. The gradient along the vertical diameter is largest and 
yields a .value of Ids/drl N 0.473. These temperature profiles too are near 
to symmetrical in the core region. The temperature at r = 0 is slightly above 
To,  the average of the two imposed temperatures. 
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The streamline pattern for a heating angle of 15" is very similar in shape 
to that for 4 = 0". However, the velocities at the same locations are 
increased with the heating angle. The temperature profiles are also similar 
but the degree of stratification is less for = 15" than it was for b, = 0". 
The temperature gradient along the vertical diameter was found to be 
0.374 as compared to 0.473 for b, = 0". 

t s  
STREAMLINE INTERVA BETWEEN POINTS TOTAL TIME 

I I minute 50 minutes 
2 I minute 51 minutes 
3 I minute 68; minutes 

4 minutes  60 minutes 4 

FIG. 31. Streamline pattern for 4 = 45' (from rest) [371. 

Figure 31 represents the streamline pattern when C#I = 45". This pattern 
is markedly different from the patterns for b, = 0" and C#I = 15" in that the 
motion consists entirely of one cell. The pattern is unsymmetric with the 
cell being centered to the left of the center of the cylinder. The area to the 
right of streamline 4 was investigated in search of another cell, but none 
could be found. The movement of the particles there was such as to circum- 
scribe streamline 4. The streamlines are elliptical in shape again, but now 
the major axis has a slightly negative slope. This negative slope may be 
explained on the basis of physical reasoning. The driving force for the 
fluid motion is the density differences in the fluid caused by the thermal 
boundary condition. The extrema in the thermal boundary condition are 
located at either end of a diameter of the cylinder. As the fluid passes these 
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extrema the driving force is most influential. The driving force, however, 
acts in the vertical direction. Therefore the fluid would tend towards vertical 
motion in the vicinity of the extrema, vertically upwards near T,,, and 
vertically downwards near Tmi,. This factor, together with the physical 
constraint of the cylinder walls, would cause the major axis to be at  an 
angle intermediate between the horizontal and the value of the heating 
angle. Menold and Ostrach [33] predicted elliptical-like streamlines when 
4 = 45" with the major axis having a positive slope. Note also that the 
fluid in the core is moving faster now than it was when 4 = 0" or 15". 
Figure 32 shows the velocity profiles along the vertical and horizontal 

FIG. 32. Velocity profiles for = 45 (from rest) [37]. 0-horizontal diameter; 
0-vertical diameter. 

diameters when 4 = 45". Along the horizontal diameter, there is a large 
region near the center of the cylinder in  which the velocities are very small. 
The curve only crosses the axis once indicating that the motion consists of 
one cell. The fact that the point at which the curve crosses the axis is to 
the left of the center of the cylinder agrees with the streamline trace in Fig. 
31, showing the center of the cell to be left of the center of the cylinder. 
Both curves agree qualitatively with those of Sabzevari and Ostrach [35]. 
Again, Sabzevari and Ostrach show the velocity to be zero near the center 
of the horizontal diameter where small velocities were found in this study. 
Figure 33 shows the temperature profiles when 4 = 45". There is a tem- 
perature gradient present but i t  is much smaller than when 4 = 0" or 15". 
The maximum gradient, along the vertical diameter, is only 0.225 now as 
compared to 0.374 for 4 = 15" and 0.473 for 4 = 0". 

The streamline pattern for 4 = 60" is quite similar to that for 4 = 45" 
except that the fluid moves slightly faster. The slope of the major axis of 
the streamlines is also more pronounced. The temperature profiles for 
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40 0 8  0 6  0 4  0 2  0 0 2  0 4  0 6  0 8  10 
r r 

FIG. 33. Temperature profiles for 4 = 45 (from rest) [ 3 7 ] .  

4 = 60" indicate even less stratification than for 4 = 45". The indicated 
vertical temperature gradient now is 0.146. 

Several trends can be observed from the preceding results. When the 
heating angle is zero the motion of the core region consists of two small 
slowly rotating cells situated along the horizontal diameter. The motion of 
the remainder of the fluid is such as to circumscribe both of these small 
cells. This causes the velocity to be nearly horizontal above and below the 
cells, with a motion towards the left above the cells and towards the right 
below them. The velocity of the fluid in these cells is about an order of 
magnitude less than the velocities encountered further from the center of 
the cylinder. This is in accord with the analytical results of Hantman and 
Ostrach [36]. Also, the fluid in  the central region is thermally stratified, 
with a relatively large temperature gradient, and with the temperature 
increasing vertically upward. As 4 is increased from zero, this behavior 
continues but the velocities increase as the temperature gradients decrease. 
At some value of 4, intermediate between 4 = 15" and 4 = 45", the two- 
cell behavior ceases, and one cell, centered to the left of the center of the 
cylinder, appears. The streamline pattern is much less symmetric than 
before. The fluid in the core is still thermally stratified, but the temperature 
gradient is a fraction of what it was for the smaller values of 4.  As 4 is 
increased further, the one-cell behavior persists with the velocities con- 
tinuing to  increase and the temperature gradient continuing to decrease. 

Tests were run at values of 4 greater than 60", but if 4 became too large, 
axial motion was observed. For 4 = 67+", the two-dimensional model 
started t o  break down. For 4 = 75', there was too much axial motion to 
make any meaningful measurements. Ostrach and Pnueli [49] showed that 
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when heating is directed from below, 4 = 90", a thermal instability exists 
and the flow always starts in the direction of the longest dimension. Axial 
motion will dominate as long as the length of the cylinder is greater than 
its diameter. Since this is the case here, a two-dimensional flow is not 
possible when heating is directed from below. It appears that as the heating 
angle increases beyond 60" this effect becomes important. 

In all the cases studied, some unsymmetric behavior was encountered, 
more at  large values of the heating angle than at smaller values. This 
behavior is principally attributed to two factors. First, the thermal boundary 
condition, which is the driving force for the fluid motion, is slightly unsym- 
metric. Second, the viscosity temperature relation for the working fluid, as 
provided by the General Electric Company, shows that the viscosity change 
will be about 10% over the temperature range indicative of this experiment. 
In every case, the temperature at the center of the cylinder was slightly 
greater than the average of the two imposed temperatures. 

It was now desired to see if the initial condition would have an effect on 
the steady-state solution. Two different steady-state types of flow were 
previously encountered : the two-cell, highly stratified, slower flow indicative 
of small heating angles; and the one-cell, slightly stratified, faster moving 
flow indicative of greater heating angles. The plan now was to set up the 
cylinder at 4 = 45" and let the flow reach steady state. Then the cylinder 
would be rotated so 4 = 0" and again allowed to reach steady state. In  
this way the steady-state results for 4 = 45", as depicted in Figs. 31 and 33, 
would become the initial conditions for 4 = 0". The new steady-state 
results indicated that the two-cell mode again appeared and that the velo- 
cities slowed down and that the degree of thermal stratification increased. 
The gradient along the vertical diameter is now 0.467 as compared to 0.473 
for 4 = 0'. starting from rest and 0.225 for the initial condition. It is con- 
cluded that the resulting flow is the same as that depicted in Figs. 28 and 30. 
In other words, the steady-state results for heating from the side are the 
same whether the flow was started from rest or  from the state depicted in 
Figs. 31 and 33. Certainly, the initial condition did not persist at 4 = 0". 

In much of the previous work, the core is referred to as either stagnant 
and thermally stratified or as isothermal and rotating. I n  the work of 
Brooks and Ostrach some motion in the core was always observed and 
some degree of thermal stratification was always detected. If the results 
for 4 = 45" were to be interpreted as a nearly isothermal rotating core, i t  
is seen that this situation does not remain at 4 = 0". It is still possible that 
other initial conditions will cause other steady-state results, but that is a 
task for future investigations. In this work, only these two initial conditions 
were investigated. 

The results presented here agree qualitatively with other experimental 
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work. Other works do  not present experimentally found streamlines, but 
velocity and temperature profiles are presented. Martini and Churchill [22], 
using the step function boundary condition, conclude that there is a narrow 
ring of circulating fluid when heating is directed from the side. This ring is 
narrowest near 0 = 0" and 180" and increases in thickness near 0 = 90" 
and 270". Also the velocities are largest near 0 = 0" and 180" and decrease 
as the fluid approaches 8 = 90" and 270". This behavior is indicative of 
the streamlines presented in this study. Martini and Churchill conclude 
that the core region is thermally stratified and essentially stagnant but has 
slow-moving eddies. Again, the results here bear this out. 

The results of Sabzevar and Ostrach [35] agree to a certain extent with 
the present results although they used a cosine boundary condition. For 
heating from the side, their velocity profiles agree qualitatively with the 
ones presented here, thus indicating a core region of the same general shape 
as was found here. However, they found no evidence of two cells. They do  
agree that the fluid is thermally stratified. At 4 = 15", Sabzevari and 
Ostach find evidence of the two cells, but do  not find them to be situated 
along the horizontal diameter. For 4 = 45" and 60", they conclude that 
the core region is isothermal and rotating. The present work also found 
the core to be rotating but did detect a small temperature gradient. The 
two works agree in that the types of flow are different for large values of 
4 as opposed to small values of 4. 

IV. Concluding Remarks 

The work presented above indicates the extremely complex nature of 
natural convection phenomena in enclosures. The difficulties arise from the 
coupling of the flow and thermal aspects, the coupling of the boundary 
layer and the core, and the sensitivity of the flow configuration to the 
imposed thermal boundary condition. These effects lead to core configura- 
tions in which the velocities can vary from values equal to those in the 
boundary layer to ones which are an order of magnitude or less, to secondary 
and tertiary flows, and to  different types within a given geometric con- 
figuration, e.g., in the wall, interior, and end regions. All of these make 
both theoretical and experimental investigation extremely difficult. 

Nevertheless, analytical, numerical, and experimental studies have been 
made which describe parts of the entire process well so that at least a 
qualitative understanding of the associated phenomena now exists. Con- 
siderably more research is required to obtain greater insight into the entire 
flow regime and how one situation changes to another so that accurate 
quantitative predictions can be made. 
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NOMENCLATURE 

U 

c, c' 

CP 

lf 

f 
6 
Cr 
h 
h ' 

K 

k 
k ,  
I 
Nu 
P 
Pr 
Q 
9 

R 
r 

Ro 
Ra 
T 
To 
AT 

lJ 
II 

V 

I' 

X 

aspect ratio, lid 
modified Oseen parameter, Eqs. 

(47h (40) 
specific heat 
width 
constant in Fig. 10, Ref. [27] 
acceleration of gravity 
Gra:;hof number, pg(T,, ~ TC)d3/vZ 
heat transfer coefficient, Eq. (10) 
heat transfer coefficient based on 

frictional heating parameter, PrGr 

thermal conductivity 
apparent thermal conductivity 
height 
Nusjelt number 
pressure 
Praridtl number, c p p / k  
totai. heat flux, Eq. (21) 
heat flow per unit area and time, 

radial coordinate 
dimensionless radial coordinate, 

radius 
Rayleigh number, PrGr 
temperature 
average temperature 
amplitude of wall temperature dis- 

vertical or radial velocity component 
dimensionless vertical or radial 

horizontal or azimuthal velocity 

dimensionless horizontal or azi- 

vertical coordinate 

(TW - TnJ 

(BgRo,lcp) 

Eq. (10) 

R,'Ro 

t r ibution 

velocity component 

component 

muthal velocity component 

depth of penetration 
dimensionless vertical coordinate 
horizontal coordinate 
dimensionless horizontal coordinate 
transformed coordinate, 1 - y 
thermal diffusivity, k / p c p  
volumetric expansion coefficient 
dimensionless centerline vertical 

temperature gradient (T,, - TJ1 
( (lT,nldx) 

sin 4, Eq. (54) 
dimensionless centerline tempera- 

(Ti, - Tc) 
dimensionless temperature differ- 

ence. Eq. (6) or azimuthal co- 
ordinate 

ture difference, ( T  - T,,,)/ 

prliJ X 
\ / c  Gr/2 
absolute viscosity 
kinematic viscosity 
cos 9, Eq. (57) 
fluid density 
dimensionless temperature differ- 

ence, Eq. (35) 
heating phase angle, Eq. (31) 
stream function 
dimensionless stream function, Eqs. 

(6) and (35) 

- 

SUBSCRIPTS 

C cooler wall 
c conduction regime 
d departure corner 
H hotter wall 
m centerline 
s starting corner 
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1 . Introduction 

The object o f  this article is to illustrate the incorporation of spectroscopic 
information into the radiative transfer equations. and to present a reasonable 
means of  treating radiative energy transfer within gases . Specific restriction 
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is made to  infrared gaseous radiation, which results from molecular transitions 
involving both vibrational and rotational energies, and emphasis will be 
placed upon the application of molecular band models to radiative transfer 
analyses. In a sense, the present chapter may be regarded as a continuation 
of the chapter by C. L. Tien, appearing in Volume 5 of Aduances in Heat 
Tratisfi.r, within which d e t a i I ed i n form at i o n regard i n g v i brat i o n - ro t a t i o n 
bands is included. Consequently, the present chapter will only briefly review 
vibration-rotation spectra, while the main objective will be to apply band 
information to the formulation of radiative energy transfer within gases, i.e., 
to the application of local conservation of energy within a gas. 

The chapter is divided into several sections, and the following section, 
Section I I, briefly reviews infrared band spectra, introduces very simple 
band models, and proceeds to discuss the formulation of total band absorpt- 
ance information with the aid of these models. The basic equations describing 
radiative transfer within an infrared absorbing-emitting gas are formulated 
in  Section 111, and these allow for radiatively induced departures from local 
thermodynamic equilibrium. The final section, Section IV, presents some 
illustrative radiative transfer analyses, with emphasis upon physical inter- 
pretations and the relative importance of thermal radiation versus molecular 
conduction as energy transport mechanisms. 

11. Band Absorptance Models 

The purpose of this section is to formulate and discuss spectroscopic 
models describing the total band absorptance for infrared radiating gases. 
As will be seen in Section 111, the total band absorptance plays an  essential 
role in  describing the equations for the radiative energy flux. First, however, 
it will be necessary to review briefly several aspects of the basic structure of 
vibration-rotation bands. As previously discussed, no attempt at complete- 
ness will be made, since a description of infrared band structure has been 
given in the article by Tien [ I ] .  

A.  BAND ABSORPTION 

Infrared absorption and emission of thermal radiation is a consequence 
of coupled vibrational and rotational energy transitions. Quite obviously, 
a diatomic molecule is the simplest molecule which will undergo such 
transitions. However, symmetric diatomic molecules, such as 0, and N,, 
have no permanent dipole moment, and thus they are transparent to infrared 
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radiation For unsymmetric diatomic molecules, such as CO, the infrared 
spectrum will consist of a fundamental vibration-rotation band occurring 
at the fundamental vibrational frequency of the molecule, i.e., the band arises 
due to an energy transition between two adjacent vibrational energy levels. 
Vibrational transitions spanning three vibrational levels produce the first 
overtone band located at twice the fundamental frequency of the molecule, 
and subsequent overtone bands occur at higher multiples of the fundamental 
frequency. In general, the overtone bands are quite insignificant relative to 
the fundamental band. 

The picture is much the same for polyatomic molecules, except that these 
have more vibrational degrees of freedom. For example, carbon dioxide is a 
linear triatomic molecule and thus possesses four vibrational degrees of 
freedom. The two bending frequencies, however, are identical, while one of the 
stretching modes is symmetric and thus has no permanent dipole moment. 
Consequently, carbon dioxide has two fundamental bands. In addition to 
fundamental and overtone bands, the infrared spectrum of polyatomic 
molecules also includes combination and difference bands which occur at 
linear combinations or differences of the fundamental frequencies. Again 
choosing carbon dioxide as an example, the important infrared bands are 
the 15 ,u and 4.3 p fundamental bands and the 2.7 p combination band. 

While the location of a vibration-rotation band is described by the assoc- 
iated vibrational transition, the band structure is governed by simultaneous 
rotational transitions which accompany a vibrational transition. As a con- 
sequence of the unequal spacing of rotational energy levels, the coupled 
vibration-rotation transitions occur at discrete frequencies located about the 
vibrational frequency. The resulting band structure in turn consists of an 
array of discrete rotational lines. 

Before proceeding, it should be mentioned that while a vibrational transi- 
tion is always coupled with a rotational transition, rotational transitions do 
occur by themselves. Since the transition energies are very small, the resulting 
spectrum is normally in  the microwave region and has no influence on 
infrared radiation. There are exceptions, such as water vapor which possesses 
a pure rotation band in the far infrared. Often, however, this pure rotation 
band is treated in a manner similar to a vibration-rotation band. 

In order to describe the absorption characteristics of a vibration-rotation 
band, it is first necessary to consider the variation of the spectral absorption 
coefficient for a single line. For infrared radiation, the most important 
line-broadening mechanism is pressure broadening [ I ] ,  and the variation of 

' Symmetric diatomic molecules may have pressure-induced bands which can play a 
significant role in atmospheric radiation. For example, infrared transmission by hydrogen 
is importan1 in the atmospheres of the Jovian planets [2, 31. 
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the spectral absorption coefficient with wave number is given by the Lorentz 
line profile as 

(1) 
- - -  Kmj  S j  Y i  
P 

- 
7L yf + (0 - W j ) 2 .  

Here ti, denotes the volumetric absorption coefficient, and w is the wave 
number (o = vjc where c is the speed of light and v the frequency). The 
rotational quantum number is denoted by j ,  such that the subscript j refers 
to a specific line within the band. Thus the wave number location of the line 
is oj, and y j  and S j  refer to the half-width and intensity of the line, respect- 
ively. For the time being, no distinction will be made between total and 
partial pressures. The line intensity is defined as 

and this is consistent with Eq. ( I ) .  The line intensity may be described in 
terms of the molecular number density and Einstein coefficients, and for a 
perfect gas it follows that S j  is a function solely of temperature. 

From kinetic theory, the line half-width may be shown to vary with pres- 
sure and temperature as 

y j  - PIJT.  (3) 

More detailed quantum-mechanical calculations again show the linear 
dependency upon pressure, but indicate that the inverse square-root variation 
with temperature is often true only for the band wings (large values of j ) .  
Again considering C 0 2  as an example, Yamamoto et a/. [4] have shown that 
the temperature dependency of the line half-width may be described by 
y j  - T-"I, and that nj  approaches 0.75 for small j ,  decreases with increasing 
j to approximately 0.3, and then increases with a further increase in j to the 
kinetic theory value of 0.5. 

The Lorentz line profile, as described by Eq. ( I ) ,  is illustrated in Fig. I .  
There are two points worth noting. The first is that increasing pressure 
broadens the line, and, with respect to a complete band consisting of many 
lines, this will at  sufficiently high pressures lead to a smearing out of the 
discrete line structure. The second point is that the maximum absorption 
coefficient, which occurs at o = w j ,  is invariant with pressure, since 

( K u j ) w = w ,  = PSjlXYj (4) 

from Eq. (l), while y j  - P.  
It remains to describe the variation of line intensity with rotational quantum 

number, and for present purposes the simple model of a harmonic oscillator 
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FIG. I ,  Lorentz line profile. 

and rigid rotor will be assumed. Following Penner [ 5 ] ,  and assuming a large 
number of lines (largej), the variation of S j  with j is 

sj = (s/ lc~oj, 'kT) cxp (-/lCLIj2,'kT), ( 5 )  

where / I  is Planck's constant, k Boltzniann's constant, and R the rotational 
constant of the molecule. Furthermore, S denotes the intensity of the total 
band, such that 

s = J' I (f<<<,/P) J ( ( 0  - oO), (6) 

where wg is the wave number at the band center. I t  should be realized, of 
course, that the integration limits i n  Eq .  (6) imply integration over the entire 
band, as opposed to Eq. (2), where the limits indicate integration over a 
single line. 

A further consequence of the rigid rotor approximation is that the lines 
are equally spaced. with the spacing tl = 28. Consequently. the line locations 
may be expressed in  terms of wave number by 

- I  

(0 - wg = *2jB.  ( 7 )  

Combination of Eqs. (6) and (7)  allows a continuous representation of S j  
with wave number, and this is illustrated in Fig. 2. I n  actuality, for ii real 
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FIG. 2. Variation of S, for a harmonic oscillator and rigid rotor 

band the two branches (P and R branches) are not symmetric, while vibrat- 
ional modes involving bending exhibit a third central branch (Q branch). 
Nevertheless, the present simplified model will serve the purpose for which it 
is intended, i.e., to illustrate the basic features of the total band absorptance. 

With regard to the variation of K~,, over the entire band, this will consist 
of the superposition of the contributions from the individual lines, such that 

I t  is further apparent that 

s = 2 c sj ,  
j = O  

where the factor of two is incl~ided to account for both branches. Again 
assuming a large number of lines, the summation may be replaced by integra- 
tion, and employing Eq. (5) 

s = ?{ :s jc / j  = s ,  

which illustrates that the separate applications of the assumption of a large 
number of lines are niutually compatible. Since S j  is a function solely of 
temperature, the above equation additionally illustrates that the band 
intensity is a function only of temperature.2 

over vibrational quantum number has been ignored. 
While thc conclusion is correct, the situation is really not this simple, since summation 
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B. BAND ABSORPTANCE 

The spectral band absorptance is defined as 

The physical interpretation of cq0 is that it is the fraction of energy which is 
absorbed when a beam of radiant energy passes through an isothermal slab 
of gas of thickness y .  The total band absorptance is in turn 

where the integration over the single band is again implied. The physical 
interpretaiion of the total band absorptance is not as simple as for its spectral 
counterpart a,. For present purposes, it will be sufficient to state that the 
total band absorptance will be needed later to generate the kernel function 
in the radiative flux equations. 

A convenient form of Eq. (10) follows to be 
W 

A = j (1 - exp [-(K, /P>Pyl)  d(w - wo>. (11) 
- o r  

From Eq. (8) it is evident that K,JP depends both upon pressure and tempera- 
ture, such that 

A = A ( 4 , ,  P, T ) .  (12) 

It is important to note the dual role that pressure plays. Its appearance in  the 
pressure path length, Py, is due simply to the fact that absorption is dependent 
upon the number of molecules which are present along a line of sight. The 
second dependency upon pressure is a result of the line structure of the band 
being a function of pressure. For sufficiently high pressures the line structure 
is smeared out, and in this limit pressure enters solely through the pressure 
path length Py. This will be illustrated in quantitative terms later. 

In the following two subsections, simple band models will be employed 
to illustrate certain basic features of the total band absorptance. There is, 
however, one important limiting form of A which is completely independent 
of the band model, and this applies when ~ , y  G 1, i.e., for the conventional 
optically thin limit in radiative transfer. Upon expanding the exponential 
in Eq. ( I  l), then 

A = P y  ( K J P )  d(w - wo) = PyS .  (13) s_ 
This is the so-called linear limit, and the important feature of this limit is 
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the fact that the total band absorptance is independent of rotational line 
structure. 

A second limiting form for the total band absorptance is that of strong 
nonoverlapping lines. Although the actual limiting result for A depends 
upon the band model employed, the conditions for achieving this limit may 
be discussed in general terms. The limit requires that two separate conditions 
be satisfied. The first is the requirement of strong lines, for which total absorp- 
tion occurs in the vicinity of the line centers. From Eq. (9), this is equivalent 
to requiring that K ~ ~ ?  $ 1 for w = w j ,  and upon combining this with Eq. (4), 
the strong line condition becomes 

SjPy/nyj + I .  (14) 

The second condition pertains to nonoverlapping lines, and the motivation 
for this limit is to be able to employ the expression 

A = 1 A j ,  
j 

where A j  is the total absorptance of a single line 
m 

A j  = [ (1  - e - K w J y >  r/(w - oj), (16) . -0t .  

with the integration being performed over the individual lines. Equation (15) 
is, of course, applicable only if the integrands in  Eq. (16) do not overlap, 
since Eq. (15) constitutes simply a summation of individual line absorptances. 
What is required, then, is that the integrand in  Eq. (16) approach zero for 
o - w j  = O(d), where d is the line spacing. With reference to Eq. ( l ) ,  the 
nonoverlapping line limit will be satisfied providing 

At this point, it should be noted that if we were to allow y j  2 O(d) ,  then 
Eq. (17) would yield 

and this is a direct contradiction to the strong line condition of Eq. (14). 
Hence, to avoid this contradiction it  is necessary to require that y j  < d. The 
conditions which must be satisfied i n  order to achieve nonoverlapping lines 
are thus 

sjP?/nyj < 1, 

yj/d 1,  SjPyyj/nd2 < 1, (1 8) 

where the second condition follows from Eq. (17). The above conditions, 
together with Eq. (14), describe the strong nonoverlapping line limit. The 
application of these three conditions in deriving this limit will be illustrated 
in the following subsection. 
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C. ELSASSER MODEL 

The simplest band model that accounts for line structure is the Elsasser 
model, for which equally spaced lincs o f  equal intensity and equal half-width 
are assumed. A portion of such a band is illustrated in Fig. 3, where the 

-d d 

w - w o  

FIG. 3 .  Elsasser band model. 

broken curves represent the absorption coefficient o f  the individual lines, 
while the solid curve is the absorption coellicient as given by Eq. (X),  and this 
may be rephrased as 

The subscriptj has been dropped from y, i n  accord with the previous assump- 
tion, but it is retained in Sj ,  even though S, is independent o f j ,  in order to 
denote that this is a line intensity. Carrying the summation to inf in i ty  does 
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not preclude restriction to a finite band width (finite number of lines), but is 
merely consistent with the earlier assumption of a large number of lines. The 
above series may be expressed in closed form as [6] 

1 sinh (nP/2)  
cosh (7$/2) - cos ( n z / 2 )  ' 

where 
p = 4g!c/, : = 4(0 - 0,) 'd. 

The quantity {j is a particularly significant parameter, since i t  represents 
the role of line structure. Recalling that y - P, the limit of large pressure 
correspond to f i  -+ CQ. This is the limit for which line structure is smeared 
out, and Eq. (20) reduces to 

(21) K (U ' P  = S,'d. 

The ratio S j ' d  also has a n  alternate interpretation. I f  an average absorption 
coefficient is defined over a line spacing as 

i t  follows from Eq. (20) that K,,, P = S, (1. 

letting t7 be the nuinber of lines i n  the band, then A ,  = t 7 d  Furthermore 
The wave number width of the total band will be denoted by A,, and 

s = 1 s, = ns,, 
J 

and the total absorptance of the Elsasser band follows from Eqs. ( I  I ) and 
(20) to be 

where I( is a dimensionless pressure path length defined by 

I I  = SP]> A,. 

Equation (22) has a form that is characteristic of all band models, namely, 
that the total absorptance may be expressed as 

A = A,X(u,  /I), (23) 

where A(u. p )  is a dimensionless function. Recall from the previous discussion 
that pressure enters into the band absorptance in two ways, both through 
the pressure path length and a line structure effect. This dual role is clearly 
illustrated by Eq. (23), since u is a dimensionless pressure path length, while 

is a line structure parameter. 
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Consider now limiting forms of the total band absorptance. The linear 
limit, applicable for K 6 I ,  readily follows from Eq. (22) to be 

- 

A = 21, u < I ,  (24) 
and this is consistent with Eq. ( 1  3). Note once again that line structure plays 
no role in the limit of small path lengths. In the large path length limit, 
u 9 1,  and Eq. (22) yields 

Physically, of course, this represents total absorption within the finite-width 
band. It should be emphasized, however, that more realistic band models 
yield considerably different results, as will be illustrated in the next subsection. 

A third limit corresponds to strong nonoverlapping lines, and following 
Penner [5] or  Goody [6], Eq. (22) may be reduced to 

- 

A = 1 ,  K 9 I .  (25) 

A = erf(+JG77'2), (26) 

subject t o  certain constraints. As discussed by Penner [j], these consist of 
/I < 1 and zi 'p  % 1 .  With reference to Eqs. (14) and (18), the remaining 
requirement for the strong nonoverlapping line limit is f lu << 1,  for which 
Eq. (26) yields 

A = Jpu, p < I ,  u ' p  9 1 ,  f lu G 1. (27) 
This is also referred to as the square-root limit. 

out, and letting /j -, co, then 
A final limiting form of Eq. (22) is that for which line structure is smeared 

(28) 
- 
A = 1 - ( > - I '  , 7 9 1 .  

As should be expected, this is simply Beer's law. 

u / 2 *  

FIG. 4. Total band sbsorptance for Elsasser model 
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The Elsasser band absorptance is illustrated in Fig. 4, and the various 
limiting forms are clearly evident. For u < 1 ,  the linear limit, A = u, is 
obtained, with the band absorptance being independent of line structure. 
The three constraints on the square-root limit are also apparent. This limit 
requires p < 1, but it still departs from the complete solution for either 
large or small u.  The departure for small u denotes a violation of the require- 
ment that u / p  $- 1,  such that the strong line condition is no longer satisfied. 
For large u, the condition pu < 1 is not fulfilled, and Eq. (15) is no longer 
applicable. The present large path length limit, 2 = I ,  simply denotes total 
absorption within the band, and this is a consequence of the Elsasser model 
having a prescribed finite width. For a more realistic band model, as described 
in the following subsection, the total band absorptance will asymptotically 
approach a function of u rather than unity. 

D. RIGID-ROTOR. HARMONIC-OSCILLATOR MODEL 

Assuming the molecular model of a rigid rotor and harmonic oscillator, 
the distribution of line intensities is given by Eq. ( 5 ) ,  while the line spacing 
corresponds to Eq. (7). Lorentz line shapes will again be assumed. I n  contrast 
to the Elsasser model, there is no defined bandwidth, since the line intensities 
approach zero asymptotically in the band wings. Thus, the bandwidth 
parameter A,, will not correspond to a simple specified width, but instead 
will arise as an effective width resulting from the line intensity distribution 
of Eq. (5). No attempt at a complete formulation of the total band absorp- 
tance will be made; however, the limiting expressions will be presented. Since 
the linear limit is completely general, then Eq. (24) is applicable to the present 
band model. 

Considering the large path length limit (u  9 I ) ,  it will be convenient to 
initially assume a high pressure such that line structure is smeared out, which 
corresponds to the limit + 00. Thus, in accord with Eq. (21), and upon 
combining Eqs. (5 ) ,  (7), and (9), the spectral band absorptance is described by 

CI, = 1 - exp (-Ute-<’) 

5 = ( 0  - wo)/Ao, 

(29) 

(30) 

where again u = SPy/A, , ,  while 

Furthermore, since the band is symmetric, and with A = A / A o ,  then 
r p  
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Combination of Eqs. (29) and (31) thus describes the total band absorptance 
in the limit as f i  --f co, and numerical results are given by Penner [ 5 ] .  
Concerning an asymptotic expression for large u, one procedure is to combine 
Eqs. (29) and (31) and perform an asymptotic expansion. A physically more 
useful method, however, with reference to the inclusion of line structure, 
follows that employed by Edwards and Menard [7]. Upon defining 

5 ,  = Jlnu, 

A = 2 r L  + 2 r 2 ,  
Eq. (31) may be written as 

where 

rl = jo‘IL1 - exp <-zi<e-c’>] d l ,  

r2 = - exp < - z i ~ e - ~ ’ > ]  d<. 

It may readily be shown that for 11 % 1 

r, + J1.i (33a) 

r2 < 4. (33b) 
Thus, the large path length limit  follows to be 

A = 2 J l n u ,  l l $ l  (34) 
While Eq. (34) has been derived subject to the condition /I -+ co, i t  is 

easily shown that this restriction may be removed. With reference to Fig. 5, 
1.0 

C 

AREA 

FIG. 5.  Spectral band absorptance for large path lengths. 



242 R. D. CESS AND S. N. TIWARI 

rl denotes the area of the saturated portion of the band, and the inclusion 
of line structure will not alter Eq. (33a) as a proper asymptotic limit. Thus, 
only I-, will be affected. Again with reference to Fig. 5 ,  if the region 5 > 
is considered to consist of a series of Elsasser bands, it  follows that the 
inclusion of line structure will result in a decrease in I-,, and Eq. (33b) is 
again valid. Equation (34) therefore constitutes the asymptotic limit for the 
total band absorptance regardless of the value the line structure parameter p. 

The third limit is the square-root limit, and recall that this corresponds 
to strong nonoverlapping lines. For strong lines, the Lorentz line profile, 
Eq. (I), may be expressed by [6] 

K , j / P  = sjy,,’(W - W j ) ‘ ,  

and upon substituting this into Eq. (16), we have 

A j  = 2(sjyjPy)”2. 
In turn, from Eq. (15), 

,x 50 - m  

j = O  j = O  j = O  
A = 2 A j  = 4 (SjyjPy)’” = 4JyPy JK, 

where y is a rotationally averaged mean line width defined by 

Again employing the assumption of a large number of lines, then 

and upon combining this with Eq. ( 5 ) ,  and noting from Eq. (7) that d = 28, 
it follows that 

A = 2 3 ’ 4 r ( 3 / 4 ) [ ~ ~ ~ , ~ , ( 4 ~ , ’ ~ / ) 1 ” 2 .  (36) 
At this point it should again be emphasized that summation over vibra- 

tional quantum number has not been taken into account. While this has no 
direct bearing on the linear and large path length limits, since the band 
intensity S already denotes a summation over vibrational quantum number, 
i t  does affect the interpretation of the mean line width. Equation (36) is true 
only when all transitions have the same lower vibrational state. Upon letting 
11 be the quantum number of the lower vibrational state, then Eq. (36) should 
be recast as 

A ,  = P 4 r ( 3  ‘ 4 ) [ ~ , ~ ~ ~ ~ ( 4 ~ , ’ d ) ] ~ ’ ~ ,  (37) 

where S,  represents the distribution of intensity with vibrational quantum 
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number, such that S = c:=o S,. It has been assumed in Eq. (37) that the 
rotationally averaged line width y is independent of vibrational quantum 
number c, and this has been confirmed by Yamamato et a/ .  [4] for C 0 2 .  

Following Edwards and Menard [8], and Edwards [9], it will further be 
assumed that rotational lines resulting from different vibrational levels do 
not overlap, and the total band absorptance may thus be written as 

a) 

A = 1 A,.  
u = o  

From Eq. (37), it follows that a vibrationally averaged mean line width may 
be defined as [8, 91 

Thus, upon letting p = 4?/d, the square-root limit follows from Eqs. (37) 
and (38) to be 

A = 2.06JFu, < 1, u / / I  & 1, BU 6 1. (40) 

At sufficiently low temperatures, for which only the vibrational ground 
state is populated, Eq. (39) will reduce to  7 = y .  As temperature increases, 
however, the summation in Eq. (39) will become a significant function of 
temperature, and the temperature dependence of 1/ may differ substantially 
from that of y. To give an illustration, consider the 4.3 p fundamental band 
of CO,. Employing the yj(T)  results of Yamamoto P t  at. [4] in  Eq. (35 ) ,  
the temperature variation of y(T) may be expressed by 

Y ( T )  = Y(TO)(T,’TO)-~’~, (41) 

and for temperatures of roughly 300°K and lower, this should adequately 
describe ?(T).  Edwards and Menard [8], on the other hand, have found an 
average temperature dependence for the range 300°K to 1390°K of 

7 = ~(To)(~!T0)1’Z. (42) 

The discrepancy between Eqs. (41) and (42) implies a rapid change in the 
temperature dependence of -7 as temperature is increased. 

The primary utility of the present molecular model of a rigid rotor and 
harmonic oscillator has been to illustrate limiting solutions of the total 
band absorptance for a semirealistic molecular model. One important con- 
clusion is that line structure appears only in the square-root limit, and thus 
this limit has been employed to describe the mean line width as defined by 
Eqs. (35) and (39). 
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E. BAND ABSORPTANCE CORRELATIONS 

While the preceding subsection dealt with limiting forms of the total 
band absorptance, it is necessary to have at hand an expression for A(u, p) 
which is applicable for all values of u and p. Several such expressions are 
available, and they are all based upon constructing an expression for A(u, p) 
which satisfies certain limiting conditions. For present purposes, the same 
limits are employed by Edwards and Menard [7] will be used, and these are 

- 
A = U, u 4 1, (434 

A = 2JF, p @ 1,  24/p $’ 1 ,  pU 4 1, (43 b) 

A = Inu, u % I .  (434 

While Edwards and Menard interpreted the above in  terms of a reordered 
exponential distribution of line intensities, a slightly different explanation 
will be given here. The first limit, Eq. (43a), is simply the general linear 
limit, while Eq. (43b) is essentially Eq. (40) for the rigid rotor and harmonic 
oscillator. The third limit is of a different form than that of Eq. (34) for the 
rigid rotor and harmonic oscillator. For moderately large values of u the 
two expressions are in reasonable numerical agreement, but for increasingly 
large u they begin to diverge. The rational for using Eq. (43c) is twofold. 
First, Edwards and Menard have shown that a logarithmic limit is attained 
for nonrigid rather than rigid rotation, and second, existing empirical 
correlations are of the same form as Eq. (43c). 

The first band absorptance correlation to satisfy all three limits is that 
proposed by Edwards and Menard [7], and this consists of an analytic 
interpolation of the form 

- 
p s  1 :  A = U, A < /I, 

A = 2 J u p -  p, p < 2 < (2 - p). 

A > (2 - /I). A = In(Pu) + (2 - /)), 

p >  1 :  A = u, A <  I ,  

A >  1 .  A = Inu + I ,  

By comparing the above correlation with experimental data over a large 
range of pressure and temperature, Edwards and co-workers have empirically 
determined the necessary correlation quantities S(T), A,(T), and p(T, P,), 
where P, is the effective broadening pressure, for the important bands of 
CO, COz, H,O, and CH,. In determining /I(T, Pc) ,  both self-broadening 
and nitrogen broadening were considered. These results are summarized by 
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Edwards ct uI. 
fundamental of H,O, it  was found that 

In particular, for the CO fundamental and the 6.3 p 

A ,  = 1.91(I tB~ih~)”~,  (44) 

and this is in  excellent agreement with Eq. (30). 

and Lowder [ I  I] ,  and this is of the form 
A continuous band absorptance correlation has been proposcd by Tien 

where 
f ( p )  = 2.94[1 - exp(-2.60[])]. 

The choice of Eq. (45) was based on the specification of five conditions, 
and the form ofJ(P) was chosen so as to give agreement with the correlation 
of Edwards and Menard. The square-root limit, Eq. (43b), was not, however, 
one of the specified conditions, and Eq. (45) does not satisfy this requirement, 

A continuous correlation for A(u, [j) has also been proposed by Goody 
and Belton [12], and in terms of the present nomenclature this may be 
written as 

2 = 2 In{ 1 + [&d(u + 4p)’/2]). (46) 

Although this correlation satisfies the three limits as specified by Eqs. (43), 
there appears to be one shortcoming. Upon letting /? -+ co, which corres- 
ponds to smeared out line structure, Eq. (46) reduces to 

A = 2 In(1 + u/2), 

and for large u this yields 2 In I I .  The linear and logarithmic limits are, 
however, independent of line structure, such that Eqs. (43a) and (43c) should 
be achieved irrespective of whether one does or does not let -+ co. Thus, 
it would appear that thc use of Eq. (46) should be restricted to relatively 
small values of 8. 

A fairly simple correlation, which does satisfy the above constraint, in  
addition to all of Eqs. (43), is of the form 

2 = 2 In{] + u’[2 + ~ ” ~ ( 1  + 1 f[1)1’2]} (47) 

Preliminary comparisons indicate that Eq. (47) does an excellent job of 
correlating band absorptance data for CO,. 

The correlation quantities C1 and C3 of Edwards et uI.  [lo] correspond to the present 
nomenclature through A. = C ,  and S = C, /RT,  where R is the gas constant. 
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111. Basic Equations 

In this section the basic equations will be developed which describe the 
radiative flux vector within an infrared absorbing-emitting gas. Knowledge 
of the radiative flux vector, qR,  is of course necessary in  any conservation 
of energy analysis, since the energy equation for a radiatively participating 
gas is of the form 

DT D F  
Dt Dt 

p c ,  - = div (A grad T )  + - - div qR 

where p, cp, and I. denote density, specific heat at constant pressure, and 
thermal conductivity, respectively. With reference to Eq. (48), it is necessary 
to  have a description of qR in terms of temperature within the gas, and this 
is precisely the purpose of the present section. 

Strictly speaking, Eq. (48) applies only to a molecular continuum under 
the condition of local thermodynamic equilibrium (LTE). The energy 
equation may, however, be extended to radiatively induced departures from 
LTE, and such an extension is particularly appropriate to infrared transfer. 
This simply requires replacing qR in Eq. (48) by its non-LTE counterpart. 
At the same time, however, it must be assumed that any departure from 
equilibrium population distributions will not significantly change the internal 
energy and transport properties from their equilibrium values. As discussed 
by Zel’dovich and Raizer [13], this assumption is justified providing the 
characteristic vibrational temperature hv’k (where v is a band frequency) is 
greater than the vibrational temperature. Thus, the temperature appearing 
in Eq. (48) will be regarded as the kinetic temperature. 

Radiatively induced departures from LTE occur when the gas molecules 
either emit or absorb radiative energy at such a high rate that collisional 
equilibration cannot maintain a state of equilibrium between translational, 
vibrational, and rotational energies. Rotational energies, however, require 
only a few collisions to attain equilibrium, and significant departures from 
LTE will first involve solely vibrational energies. I t  may further be assumed 
that even for non-LTE, vibrational energy levels are populated according 
to the Boltzmann distribution. However, this distribution does not corres- 
pond to the local kinetic temperature, but instead is governed by a separate 
vibrational temperature. 

In summary, the purpose of the present section is to develop an expression 
for the infrared radiative flux vector, and to allow in  this development 
radiatively induced departures from vibrational equilibrium. In describing 
the radiative flux, the kernel function will be expressed in  terms of the total 
band absorptance. This approach is analogous to the LTE formulations of 
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Goody [6], Gille and Goody [14], and Wang [15, 161, for which the kernel 
function is expressed in terms of a modified gas emissivity. For present 
purposes, the physical model and coordinate system is that illustrated in 
Fig. 6. This consists of a gas bounded by two plates whose surfaces are 
assumed to be gray and to emit and reflect in a diffuse manner. 

FIG. 6.  Physical model and coordinate system. 

A. RATE EQUATIONS AND RELAXATION TIME 

In considering radiatively induced vibrational nonequilibrium (non- 
LTE), i t  will be necessary to have information pertaining to vibrational rate 
equations and the vibrational relaxation time. The rate of change of vibra- 
tional energy of a system of oscillators may be expressed as 

dEvld t  = (dEv/dt)col l  + (dEv/dt)rad > (49) 
where the terms on the right represent contributions due to collisional and 
radiative processes, respectively, and Ev denotes the vibrational energy per 
unit volume. Furthermore, 

- div q R  = ( d E v / d t ) r a d ,  (50) 

where, due to the small separation of rotational levels, the contribution of 
rotational energy has been neglected. 

The divergence of the radiative flux is also related to the specific intensity 
I,,, and for the present one-dimensional problem this is given by the 
expression 

div qR = 0 m(dqR,/dy) dw = [:j04ff(d1,/dr) do do, 

dEv/d t  = (dE,/df),,ll -~,,m~04n(d1,~dr) c l f l  dw. 

(51) 

where R i s  the solid angle and s a coordinate measured along the pencil of 
rays. Combination of Eqs. (49) through (51) thus yields 

(52)  

This relation clearly illustrates the influence of radiation, through the second 
term on the right side, upon vibrational energy. 
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The vibrational relaxation of a system of oscillators undergoing collisional 
relaxation may be described in terms of the Bethe-Teller relation 

dE,/dt = (E,* - Ev) /q  (53) 

where E,* represents the equilibrium value of vibrational energy, and q is 
the vibrational relaxation time. A simple derivation of Eq. (53) is given by 
Zel'dovich and Raizer [13], and by Vincenti and Kruger [17], while anhar- 
monic effects have been investigated by Bazley and Montroll [18], and 
Northup and Hsu [I91 have discussed the extension to multiple quantum 
transitions. Goody [6], however, suggests accepting Eq. (53) simply as an 
experimental rather than a theoretical expression. 

Information on collisional relaxation times is available only for a limited 
number of gases [20-261. For diatomic gases, an empirical relation is given 
by Millikan and White [22] as 

(54) Pr] = exp[A(T-'I3 - 0.015p1'4) - 18.421. 

Values of A and p for carbon monoxide are A = 1.75 and 11 = 14. Note 
that q decreases rapidly with increasing temperature. 

B. EQUATION OF TRANSFER 

The formulation of the equation of transfer for vibrational nonequilibriuin 
is treated in detail by Goody [6], Gilles [27], Gilles and Vincenti [28], and 
Tiwari [29], and the complete derivation will not be repeated here. The 
formulation is based upon the assumption of a harmonic oscillator as well 
as two-level transitions between vibrational states which restricts the analysis 
to fundamental bands. However, under conditions for which the assumption 
of LTE is not justified, combination and overtone bands do not contribute 
significantly to the radiative transfer process [29]. When the assumption of 
LTE is valid, the equation of transfer reduces directly to the conventional 
macroscopic equation, and the restrictions to harmonic oscillation and two- 
level transitions no longer apply. 

Following Goody [6], the equation of transfer may be written as 

d/,lds = K J J ,  - (55) 

where the source function, J , ,  is expressed by 

J ,  = B,E,/E,* 

and B, denotes blackbody intensity. For E, = Ev*, this of course reduces to 
the equation of transfer for LTE. 
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The important point concerning Eq. ( 5 5 )  is that K,, is the cyuilibrium 
absorption coefficient, i.e., it corresponds to the local kinetic temperature. 
An explanation of this is given by Goody [6] .  More recently, Gilles [27] 
and Gilles and Vincenti [28] have pointed out that this is strictly a low 
temperature approximation. At elevated temperatures, however, collisional 
relaxation is very rapid, and it is doubtful that physical situations exist at 
elevated temperatures for which non-LTE effects would be important. 

For illustrative purposes, it will be convenient to temporarily restrict 
attention to diatomic gases, such that only a single fundamental band is 
considered. Under steady-state conditions, combination of Eqs. (52 ) ,  (53) ,  
and ( 5 5 )  yields 

Further, upon defining a time constant 

qr = E ,  */{04'dfi~~&,B,, nu, (57)  

the source function, J,, ,  may now be written as 

where 
J ,  1 Bw[(qr + qx)/'(qr + V)I,  ( 5 8 )  

x =J04*dfiJ~K,4D du/Jo4kj;...B, nw. (59) 

The time constant qr is the radiative lifetime for vibrational states, and by 
assuming that, within the narrow band, B, may be taken as independent of 
wave number, then it may be shown that [6]  

1 /qr = S ~ T C W , ~ ( P / ~ ) S ( T ) ,  (60)  

where / I  is the molecular number density, wo is the wave number at the 
band center, and S(T)  is the band intensity. Employing the perfect gas law 
P = nk7; and since S(T)  - T for a fundamental band, i t  readily follows 
that the radiative lifetime is independent of both temperature and pressure. 

Now, since B, and J,, are isotropic and slowly varying functions of wave 
number within the band, then upon combining Eqs. ( 5  1 ), ( 5 9 ,  and ( 5 8 ) ,  the 
nonequilibrium source function may be expressed as 

where 
J,,, = B,,, + W ~ r ) H 3  (61)  

( 6 2 )  H = -{;(dq,Jdg)dw 1 2 n  Jom .,dm 

and J,, and B,,, denote quantities evaluated at the band center. 
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Since J,,), = B,, for LTE, Eq. (61) clearly illustrates that the degree of 
nonequilibrium is characterized by the parameter q,’qr. When q,’qr is small, 
the source function J,, reduces to the blackbody intensity B,,, and the 
assumption of LTE is justified. On the other hand, in the limit of large q#’qr 
the divergence of the radiative flux becomes zero [6]. This physically cor- 
responds to the situation for which vibrational transitions are radiatively 
controlled, such that all photons absorbed by the gas will in  turn be re- 
emitted. There will thus be no net addition (or loss) of radiative energy to 
any gas element. For intermediate values of q/q,, the divergence of the 
radiative flux will have a lower value than that corresponding to the condition 
of LTE. Consequently, the internal transfer of radiative energy within the 
gas will be reduced as the result of vibrational nonequilibriuni. I t  is important 
to note from Eqs. (61) and (62) that, regardless of the magnitude of q,’qr, 
the assumption of LTE is always justified for the case of radiative equilibrium 
(i.e., dq,/dy = 0). This conclusion, of course, applies only for the present 
restriction of a gas having a single band. The preceding analysis may, how- 
ever, easily be extended to multiple band spectra. 

C. RADIATIVE FLUX EQUATION 

The equation of transfer, Eq. ( 5 5 ) ,  may be integrated in the conventional 
manner so as to yield the expression for the spectral radiative flux, qRm, 
with the result [30] 

q R m  = 2 B 1 m E 3 ( K d ’ )  - 2 B Z w E 3 [ K m ( L  - J’>] (63) 

+ 2n{jdJ..,o*u,~,[h-,0; - z ) ]  d z  - J , ( Z ) K , E ~ [ K J Z  - y)l  d z  

where BI,,) and Bz,, are the surface radiosities, while E,,(.u) is the exponential 
integral 

E,,(x) = pf‘-2e-x’’‘ dti. 
J O ’  

The expressions for the surface radiosities are further given as [30] 

1 Bz,, = c ~ ~ e 2 ~ ~  + 2(1 - c Z w )  B,,E,(rc,L) + n J,,)(Z)K,E~(K,L - ti,=) d z  

(64b) 
[ loL 

The spectral absorption coefficient, K ~ ~ ,  has been taken to be independent 
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of temperature in Eqs. (63)  and (64), and this effectively constitutes a lineari- 
zation for small temperature differences. Note that for black surfaces 
B,,  = e,(,, and B,, = e , ,  whereas for LTE J,(y) = BJg) = e(,,(g)’i~, with 
e, denoting Planck’s function. 

An often employed approximation in  radiative transfer involves approxi- 
mating the exponential integral E,(x)  by an exponential function, such that 
E2(x)  N a exp ( -hx) .  Several combinations of (1 and b have been utilized, 
and for present purposes the approximation will be chosen as 

E,(x) N 3 exp ( -  3x/2) ,  

E3(X) = - E,(.u) dx = j 
The total radiative flux is further given by 

(65a) 

+ exp (- 3x/2) .  (65b) 

In the subsequent discussion, attention will be directed solely to black 
bounding surfaces, although surface eniittance effects will be discussed in 
Section IV. Thus, upon combining Eqs. (63), (65) ,  and (66), the total radiative 
flux is given by 

- jJyL[~~~ , ,o (z )  - e 2 w , , ~ 1  A w  ti,, exp [ - 3 K , ( z  - y ) ]  dw dz ,  (67) 

where (J = nT4, with n denoting the Stefan-Boltzniann constant, while Aui 
indicates integration over the single band, again recalling that J,,] and e(,, 
are slowly varying functions of wave number over the single band. 

The primary motivation for employing the exponential kernel approxi- 
mation in the present formulation is that it allows the kernel function in 
Eq. (67) to be expressed in terms of the total band absorptance, since, from 
Eq. (1 I ) ,  

d A / d y  = A‘( ) , )  = ti ,ue-KWydw, I&* 
and this is the form of the kernel function in Eq. (67). Thus, letting 

5 = y/L,  u0 = SPLIA,, 

and employing the dimensionless band absorptance, A(u, p), as defined by 
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Eq. (23), the final form of the radiative flux equation is obtained by com- 
bining Eqs. (61), (62), and (67), a s  

qR(t) = el - ez + 3 ~ 0 ~ 0  [e,,,(t‘) - e ~ , , , I ~ ‘ [ + ~ ~ o ( t  - 5‘)I dt‘ 

where A’(u) denotes the derivative of A(u) with respect to u. Note that 
rotational line structure is included in  Eq. (68) through the band absorptance. 
Furthermore, Eq. (68) describes the radiative flux for non-LTE in terms of 
the band absorptance for a gas in LTE. As previously discussed, following 
Eq. (56) ,  this is appropriate since K,, is an  equilibrium absorption coefficient 
even under non-LTE conditions. 

The non-LTE influence in Eq. (68) is through the latter terms which are 
proportional to q /q r ,  and which vanish in the limit of LTE (i.e., q/qr -+ 0). 
Although Eq. (68) applies only to a single band spectrum, for LTE the 
extension to multiple bands requires simply a summation of the important 
bands. This will be illustrated in Section IV.  

Equation (68) possesses two convenient limiting forms. One is the con- 
ventional optically thin, limit, while the other, the large path length limit, 
corresponds to uo 9 I ,  and for infrared radiation this limit differs con- 
siderably from the optically thick or Rosseland limit. These two limiting 
forms of Eq. (68) will be treated in the following subsections. 

D. OPTICALLY THIN LIMIT 

As discussed by Sampson [31], the influence of non-LTE is most pro- 
nounced in the optically thin limit. Following cess and Tiwari [32], this 
limit may be obtained by employing the linear limit for the band absorptance, 
Eq. (43a), since the optically thin limit corresponds to uo < 1. In  the optically 
thin limit one is generally concerned wi th  the divergence of the radiative 
flux [30], and upon differentiating Eq. (68) and employing the linear limit 
A’(u) = I ,  then the appropriate expression for u0 G I becomes 

An alternate approach to the optically thin limit is given in Cess et al. [33], 
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which does not make use of the exponential kernel approximation as given 
by Eq. (65),  and it is shown that the factor of 3 appearing on the right side 
of Eq. (69) is replaced by 4 in the exact formulation. Further comments on 
the application of the exponential kernel approximation to infrared radiative 
transfer are given by Grief and Habib [34]. 

It should be observed that Eq. (69) is independent of rotational line 
structure, and this is consistent with the previous discussion on the invariance 
of A(u, /l) with the line structure parameter B in the linear limit. The obvious 
simplification of the non-LTE influence in Eq. (69) should also be noted. 
As such, all optically thin analyses based on the assumption of LTE may be 
modified to include the effect of non-I T E  simply by multiplying the diver- 
gence of the radiative flux by a constant involving the nonequilibrium 
parameter q/q,. 

E. LARGE PATH LENGTH LIMIT 

Even though the optically thick (Rosseland) limit does not apply to 
vibration-rotation bands, since optically nonthick radiation will always 
occur in the band wings [33, 351, B large path length limit does exist and is 
achieved for uo 9 1 .  Employing the method of steepest descent, i t  may be 
shown that the asymptotic form of the integrals appearing in Eq.  (68) cor- 
responds to the use of the logarithmic limit for the band absorptance, Eq. 
(43c). For illustrative purposes it will again be convenient to treat the diver- 
gence of the radiative flux vector. Thus, upon differentiating Eq. (68). 
performing a subsequent integration by parts, and utilizing the asymptotic 
formulation A(u) = In u,  one obtains 

In arriving at Eq. (701, continuity of temperature has been assumed between 
the gas and the bounding surfaces. This is physically realistic, since u0 % I 
implies that the central portion of the band is optically thick, which would 
insure temperature continuity. A more quantitative treatment of this point 
will be given in  Section 1V. 

Since the large path length limit is an  asymptotic limit for large i i o ,  it 
readily follows that the second term in Eq. (70) may be deleted, with the 
result that 

and this is precisely the result for LTE. The vanishing of the non-LTE 
influence in this limit can further be illustrated by consideration of the 
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source function. As previously discussed, non-LTE effects enter solely 
through the source function, and from Eq. (61) this may be expressed as 

Employing Eq. (70) and taking the limit for large u,, yields the result that 
J,,],(t) = ~ , , ~ ( ~ ) ' n ,  which is the source function for LTE. I n  the large path 
length limit, optically thick radiation occurs in the central portion of the 
band, whereas the wing regions constitute a continuous transition from 
optically thick to optically t h i n  radiation. Vibrational energy levels are 
evidently dominated by the optically thick portion of the spectrum, which 
suppresses non-LTE effects [31], such that  this is the reason for the existence 
of LTE in the large path length limit. 

A second significant simplification associated with Eq. (71) is that, as for 
the optically thin limit, the radiative transfer process is independent of line 
structure, since the line structure parameter does not appear in the equation. 
The reason for this is that the band absorptance becomes invariant with 
line structure for large u 0 ,  and i t  is this asymptotic result for the band 
absorptance which yields Eq. (71). Note also that Eq. (71) is independent 
of both pressure and band intensity, and this will be discussed in more detail 
in Section 1V. 

IV. Radiative Transfer Analyses 

This section presents several analyses illustrating the application of con- 
servation of energy to the determination of the temperature profile within 
an infrared radiating gas, with primary emphasis upon the basic features of 
the radiative transfer process. For this purpose, simple illustrative physical 
models will be considered. Referring to the coordinate system of Fig. 6, 
Sections IV, A, IV, B, and IV, C consider the symmetric case for which 
T,  = T ,  and there is a uniform heat source per uni t  volume, Q,  within the 
gas. I n  Section IV,  A, radiative transfer is assumed to be the sole mechanism 
of energy transfer through the gas, such that the energy equation constitutes 
a balance between the divergence of the radiative f lux  and the source Q. 
The same situation is considered in Section IV, B, except that molecular 
conduction is included as an energy transfer mechanism in order t o  illustrate 
the relative importance of conduction versus radiation within the gas. In 
both these sections restriction is made to LTE, while the influence of vibra- 
tional nonequilibrium is treated in  Section IV,  C. A brief discussion of 
radiative equilibrium is included in  Section IV,  D for purposes of illustrating 
a physical system which is not symmetric. 
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A. RADIATIVE TRANSFER 

The first illustrative solution is that for which radiative transfer is the 
sole mechanism of energy transfer within the gas. The local temperature 
distribution is thus a consequence of the uniform heat source, Q, adding 
energy to the gas, which in turn is transferred through the gas to the bounding 
surfaces by radiative transfer. The two bounding surfaces are assumed to be 
at the same temperature, T2 = T I ,  LTE is assumed to prevail, and for the 
time being the bounding surfaces are taken to be black. 

The energy equation for this situation is 

&J(~Y = Q ,  

and since the problem is symmetric, then 

q K  = 'ZOL(25 - 11, (73) 
where again 5 = y /L .  For a single-band spectrum, the radiative flux is 
described by Eq. (68). As previously discussed, however, when LTE prevails 
Eq. (68) rnay be extended to multiple-band spectra by summing Eq. (68) 
over the individual bands. Furthermore, since small temperature differences 
have been assumed in arriving at Eq. (68), one may additionally employ 
the linearization 

ew, - P I w ,  r= k / ~ ~ < , , , " / V T 1 ( ~  - TI), (74) 
where the subscript i refers to the ith band, such that wi is the wave number 
location of the band. The subsequent extension of Eq. (68) thus yields 

I1 

iii q R  = 5 [ A O i l r O i ( t / e , , / r i T ) , . l ]  [r(t') - T l ] A ' [ t L r O i ( t  - t')] dl' 
i =  1 

where t i  represents the number of vibration-rotation bands i n  the spectrum. 
Upon combining Eqs. (73) and  ( 7 5 ) ,  conservation of energy is described 

by the integral equation 

where 
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H = x H i ,  
i = l  

4 = ( T  - T i ) / ( Q L / W .  (77c) 
Employing the band absorptance correlation of Tien and Lowder [ I  11, 

as expressed by Eq. (45), together with the empirical correlations for 
S,(T), A,,(T), and pi(T, P,)  given by Edwards et a/. [lo], Eq. (76) was solved 
numerically for C 0 2 ,  H20,  and CH, [35]. These solutions were obtained 
by the method of undetermined parameters, in which a polynomial solution 
for $(t) is assumed and the constants evaluated by satisfying the integral 
equation at equally spaced locations. Both quadratic and quartic solutions 
were utilized, with the two solutions yielding virtually identical results. 
Before discussing these results, however, it will be convenient to first investi- 
gate the optically thin and large path length solutions. 

1. Optically Thin Solution 

Following Section 111, D, the optically thin solution to Eq. (76) is achieved 
by letting A’(u) = I ,  and it readily follows from Eq. (76) that 

i n  

4 = H 3 z H i u o i  i i =  1 

or 

The fact that Eq. (78) predicts the gas temperature to be independent of 
location is consistent with the result that in optically th in  limits each gas 
element exchanges radiation directly with the bounding surfaces, and this 
exchange is thus independent of position [30]. 

As discussed in Section HI, D, Eq. (78) is independent of the line structure 
parameter p i .  One may further note that the optically th in  limit is also 
independent of the bandwidth parameter A O i .  An indication of the relative 
ability of gases to transfer radiative energy is clearly given by Eq. (78), 
since a lower gas temperature implies a greater capability to transmit energy. 
Thus, the appropriate gas property that serves to measure the ability of a 
gas to radiative energy transfer is the quantity4 

n 

K = 1 Si( T)(tlt.,,,/tIT). 
i =  1 

(79) 

The quantity K may be related to the linearized Planck mean coefficient, as defined by 
Goody [ 6 ] ,  and Cogley et nl. [36].  
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For example, CO, has a larger value of K than does H,O, and thus C 0 2  
will have the greatest ability of transferring radiative energy in the optically 
thin limit. 

2 .  Large Path Length Limit 

As discussed in Section 111, E, the large path length limit is achieved 
when uoi P 1 for each band of importance, and this limit corresponds to 
employing A’(u) = I /u  in Eq. (76), with the result that 

Aside from the obvious simplification i n  form in going from Eq. (76) to 
(SO), there are other more striking consequences associated with Eq. (SO). 
For example, of the three correlation quantities A , , ,  pi, and Si, only A , ,  
appears in Eq. (SO) through the definition of & ( 5 ) .  The dependence upon 
this single correlation quantity in  the large path length limit has also been 
illustrated by Edwards rt a/. [lo] in dealing with laminar flow between 
parallel plates. The absence of the line structure parameter /?, has been 
discussed in Section 111, E, while the invariance of the band absorptance 
Si is physically logical, since the central portion of the band is saturated in 
the large path length limit, and consequently the radiative transfer process 
should not depend upon the total band area. 

A further simplification associated with Eq. (SO) is that the temperature 
profile within the gas is independent of pressure. This is not the case with 
respect to the general formulation, Eq. (76), for which pressure appears 
both in the dimensionless path length u0,  and in  the line structure parameter 
pi. This invariance of temperature profile with pressure can also be found 
from the results of Edwards C t  a/ .  [lo], and experimental confirmation has 
recently been presented by Schimmel ct a/. [37]. 

Equation (SO) constitutes a singular integral equation with a Cauchy type 
kernel, for which the solution is [38] 

4(5) = (1/.>[5(1 - 5)11’2 + C[Hl - 0 1 - 1 / 2 ,  
where C is an arbitrary constant which arises since the solution of Eq. (80) 
is not unique. However, to satisfy the physical requirement of finite tem- 
perature everywhere within the gas, C = 0, and 

(81) 

Note that this temperature profile yields the result that the gas temperature 
at  a surfrice is equal to the surface temperature, and this absence of a tem- 
perature slip is characteristic of optically thick radiation [30]. As discussed 

4(5> = (I/.”(I - 01”2.  
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in Section 111, E, this is a consequence of the fact that optically thick radia- 
tion is occurring in certain spectral regions. Optically nonthick radiation 
exists, however, in other spectral regions [33], with the result that Eq. (81) 
differs substantially froin the temperature profile which would be predicted 
using a Rosseland type (or diffusion) equation. 

Upon recasting Eq. (8 1) as 

i t  is apparent that the gas property which measures the ability of a gas to 
transfer radiative energy in the large path length limit is 

as opposed to the optically thin transport property K ,  defined by Eq. (79). 

For the sake of brevity, numerical solutions to Eq. (76) will be presented 
solely in  terms of the centerline temperature, i.e., T, = T(5 = Ii2). I n  the 
case of a single-band gas, the summation sign is removed in Eq. (76) and 
results may be expressed in tenns of the single pair of parameters uo and /l. 
This is illustrated by the solid curves in Fig. 7, and the results apply to any 
situation for which radiative transfer within the gas is the result of a single 
band. For small ido the results approach the optically thin limit as described 

100 , I , , 1 I l l 1  l I [ I  
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- 

BAND ABSORPTANCE MODEL 
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FIG. 7 .  Comparison of results for a single-band gas 
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by Eq. (78). The maximum influence of the line structure parameter exists 
for intermediate values of u o ,  while in  the large path length limit the solution 
again becomes independent of /I. 

Also illustrated in Fig. 7 is a solution employing the box model, for 
which a constant absorption coefficient h- is assumed within a finite band- 
width Aw. The relation between this width and  the bandwidth parameter 
A, was taken to be Am = (214,'38)A0, which is appropriate for C O  [33], 
and the value of the mean coefficient is in  turn i? = SP,!Aw. Clearly, such a 
model does not account for line structure. Since the box model preserves 
the band intensity, it reduces to the correct optically thin limit, but a signi- 
ficant departure between the two solutions takes place for increasing uo .  
This is easily explained on physical grounds. In the central portion of the 
band the box model underpredicts the value of the spectral absorption 
coefficient, and it thus will yield optically thin results for greater values of 
uo than will the solution employing the band absorptance. At large values 
of uo the box model overpredicts the centerline temperature due to the 
neglect of the band wings. For large path lengths the wing regions contribute 
primarily to radiative transfer. Since the box model neglects the wings, it 
underestimates the ability of the gas to transfer radiant energy for large uo 
values, and consequently i t  overpredicts the centerline temperature. 

The inapplicability of the optically thick (or Rosseland) limit should again 
be emphasized. From the box model, i t  readily follows that (T,  - T,)  - L2 
for large uo [33], and this corresponds to optically thick radiation occurring 
throughout the finite width band. From the large path length solution of 
Eq. (81), however, (T, - T , )  - L, such that the occurrence of nonthick 
radiation within the band wings significantly influences the nature of the 
radiative transfer process for large uo . 

Also shown in Fig. 7 are gray gas results [33], where, for lack of a more 
rational choice, the mean absorption coefficient has been chosen as the 
Planck mean coefficient, which is defined as 

K p  = ( 1 / 0 ~ ) /  x,e,(T) no. 

Specific comparisons are made for CO. It is quite obvious that the gray 
solution constitutes a rather large departure from reality. 

With respect to multiple band spectra, dimensionless centerline tempera- 
tures for C 0 2 ,  HzO, and CH,, as obtained from Eq. (76), are illustrated 
in Figs 8 through I I .  Since the abscissa variable is the pressure path length, 
the separate influence of pressure upon the centerline temperature is due 
solely to the alternation of the line structure of the bands due to pressure 
broadening. As the pressure is increased, the discrete line structure is 
eliminaied, and, as illustrated in Figs. 8 through 1 I ,  pressure ceases to  be a 

m 

0 
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separate parameter in the high pressure limit. This of course is analogous to 
the large 

In the large path length limit, the dimensionless centerline temperature 
follows from Eq. (81) to be 

limit of Fig. 7. 

(83) (T, - T,) / (QL/H) = 1,'2n = 0.159. 

Figures 8 through 11 consequently serve to illustrate the conditions under 
which the large path length limit constitutes a useful means of describing 
the radiative transfer process. Although these figures correspond to a 
specific physical problem, the limits of applicability of the large path length 
limit should be qualitatively indicative of other physical situations. Additional 
numerical results are given by Cess and Tiwari [35] .  
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FIG. 8. Centerline temperature results for CO, with TI = 300'K 
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FIG. 9. Centerline temperature resuits for COz with TI = 1000-K. 
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FIG. 10. Centerline temperature results for HzO with T, = 1000°K. 
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FIG. 11. Centerline temperature results for CH4 with TI = 1000°K. 

A coniparison of the relative ability of various gases to transmit radiative 
energy may be obtained by comparing the dimensional quantity (T, - T,)/QL. 
This is shown in Fig. 12 for a temperature of 500°K and a pressure of 1 atm. 
Recall that a lower centerline temperature implies a greater ability of the 
gas to transmit radiative energy, and that in the optically thin limit the 
radiative transfer capability of a given gas is dependent upon the magnitude 
of K given by Eq. (79). For the four gases considered, C 0 2  has the largest 
value of K, followed respectively by H,O, CH,, and CO. This is consistent 
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FIG. 12. Comparative results for P = 1 atm and TI = 500°K. 

with the results shown in Fig. 12 for small path lengths, i.e., CO, has the 
lowest centerline temperature, etc. As the path length is increased, however, 
CO, undergoes a transition from the most capable to nearly the least 
capable transmitter of radiative energy, since CO, has a small relative 
value for H, as defined by Eq. (82), indicating that it is a poor radiator for 
large path lengths. 

With respect to gases other than those considered here, the large path 
length property H may be evaluated solely from knowledge of the appro- 
priate band locations and rotational constants by employing Eqs. (30) and 
(82). It should be emphasized that the large path length limit, as treated 
here, is not an exact asymptotic limit, since it makes use of the logarithmic 
asymptote for the band absorptance, which in itself is an approximate 
limiting expression. 

4. Effect of Surface Emittance 

The effect of nonblack surfaces upon infrared radiative transfer will now 
be investigated, utilizing the same physical model as previously considered. 
Restriction will, however, be made to single-band gases, so that this consti- 
tutes an extension of the results of Fig. 7. Both surfaces are assumed to have 
the same eniittance, 6 ,  and it is not necessary to postulate gray surfaces, 
since 6 may be regarded as the spectral emittance at the wave number of 
the single band. 
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Following Tiwari and  Cess [39], the combination of Eqs. (63) and (64), 
under the condition of LTE, yields 

5 

(t - 4)(2/3Uo) =j 4(5’)2’[(3L10/2)(5 - t’)] d t ’  
0 

-15’ 4(5’)2’[(3Uo/2)(5‘ - 511 d5‘ 

”. 
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FIG. 13. Effect of surface emittance for a single band gas with j3 = oc). 

expected, a reduction in surface emittance gives rise to a higher centerline 
temperature, since a lower surface emittance corresponds to a reduction in 
the energy transfer capability between the gas and the surfaces. 

The optically thin limit readily follows from Eq. (84) to bc 

4(5) = 1/3u0, 

and this coincides with the single-band form of Eq. (78) for black surfaces. 
The invariance of surface emittance upon gas temperature is also observed 
for a gray gas under optically thin conditions [40]. To explain this, recall 
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that under optically thin conditions the surface radiosity is evaluated as if 
the gas were completely transparent [30], and since this corresponds to an 
isothermal enclosure for the present problem, the surface radiosity is equal 
to blackbody radiation irrespective of the value of the surface emittance. 

In the large path length limit, Eq. (84) reduces to 

The solution to this equation is also illustrated in Fig. 13, and note that 
this limit does depend upon the surface emittance. On the other hand, for a 
gray gas or any gas with a nonvanishing absorption coefficient over the 
entire spectrum, the radiation in the optically thick (Rosseland) limit is 
independent of surface emittance [30, 411. With reference to the present 
large path length solution, i t  is radiation occurring in the band wings which 
is neither optically thin nor optically thick that produces the influence o f t  
upon the temperature profile within the gas. 

It may further be noted from Fig. 13 that as c is decreased, the range of 
applicability of the limiting solutions is appreciably reduced. In particular, 
for 6 = 0.1 an extremely large value of uo would be required in order to 
approach the large uO limit. 

B. RADIATION-CONDUCTION INTERACTION 

With the exception of atmospheric applications, molecular conduction 
within a gas must be regarded as a possible energy transport mechanism, 
and, in fact, for small physical dimensions it  will dominate radiative transfer. 
The purpose of this subsection is to investigate the relative importance of 
radiation versus conduction as energy transport mechanisms, and the 
physical model of Section IV, A is again employed for illustrative purposes. 

From conservation of energy, the temperature profile within the gas is 
described by 

d2T dqR 
1 ~ - - + + ~ 0 ,  

dY dY 

where 1 is the thermal conductivity of the gas. Upon integrating this equation 
once, and noting that dT/dy = 0 and qR = 0 for y = L/2, then 
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For a gas containing n vibration-rotation bands, the radiative flux is again 
described by Eq. (75) ,  such that Eq. (85) yields the integrodifferential equation 

where 
0 = ( T  - T,),'(QL*/;.) 

and the quantity Hi is defined by Eq. (77a). Since the presence of conduction 
implies continuity of temperature at the boundaries, the boundary condition 
for this equation is O(0) = 0. When radiative transfer within the gas is 
negligible, the solution of Eq. (86) follows to be 

(87) (1 = J ( X  2 4 - t2). 
In the optically thin limit (14";  < I ) ,  Eq. (86) may be expressed as 

subject to the boundary conditions 

O(0) = 0, O'( l/2) = 0, 
and for which 

N = ( P L 2 / 2 )  Si(T,)(de,,/dT),,.  (89) 

Equation (88) possesses an elementary solution, from which the centerline 
temperature is found to be 

i =  1 

- = - { I  T, - TI 1 - 2 [  exp ( -$ \  3 N )  

QL2/i. 3 N  I + exp (-\'GI 
I t  readily follows that the diinensionless gas property N characterizes the 

relative importance of radiation versus conduction within the gas under 
optically thin conditions. For particular values of P and L,  i t  is actually the 
dimensional quantity 

which characterizes 
illustrated i n  Fig. 14. 

n 

N / P L 2  = ( 1  /i.) 1 S,  (dec,l , /dT) (90) 

this relative importance, and values of N,'PL2 are 
For CO, CO,, H,O, and CH4,  Eq. (90) was evaluated 

I= 1 
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FIG. 14. Conductioii-racliation intemction paramctcr lor optically t h i n  radiation 

employing tlie band intensities o f  Eduards et [ I / .  [lo], while for N,O and 
N H 3  the intensities where taken from Tien [ I ] .  The appropriate thermal 
conductivity values are from Tsederberg [42]. I t  should again be emphasized 
that N ' P L 2  characterizes radiation-conduction intcraction only in  the 
optically thin limit. 

For the large path length limit (u,, >> I ) ,  Eq. (86) reduces to  

where O(0) = 0 is again the appropriate boundary condition, and 
I 

,2.I = HL/i .  = (Lli.1 C A ~ i ( [ / ~ ~ ~ , , , ~ [ ~ ~ ) . , , .  (92) 

The dimensionless parameter M constitutes the radiation~conduction inter- 
action parameter for the large path length limit. and the dimensional 
quantity M L is illustrated i n  Fig. 15. For CO. CO,, H20, and CH,. this 
quantity was evaluated by using tlie A ,  values of Edwards PI u / .  [lo], while 
for N,O and NH, the A ,  values were calculated from Eq.  (44). 

I -  1 
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FIG. 15. Conduction-radiation interaction parameter for the large path length limit. 

A comparison of Figs. 14 and 15 shows a considerab!e difference in the 
radiation-conduction interaction for the optically thin limit as opposed to 
the large path length limit. For example, in the optically thin limit CO, 
possesses a large radiation interaction relative to the other gases, while the 
reverse is true in  the large path length limit. On the other hand, just the 
opposite trend is observed for H,O. Since the thermal conductivities of the 
various gases do not differ appreciably, this behavior is due to differences in 
radiative transfer in the optically thin and large path length limits, and a 
discussion to this effect has been given in Section IV, A. 

Equation (91) does not appear to possess a closed form solution. A 
numerical solution has thus been obtained, and the dimensionless centerline 
temperature is illustrated in Fig. 16. 

Numerical solutions of Eq. (86), which is applicable for all uoi values, 
have been obtained for several gases [32], and certain of these results are 
illustrated in Figs. 17 through 19 for CO, and HzO. The large path length 
limit, as given by Fig. 16, is also shown. From Eq. (87), the centerline tem- 
perature for pure conduction follows to be 

(T,  - Tf),'(QLz,'j.) = 0.125, 
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FIG. 16. Conduction-radiation results for the large path length limit. 
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FIG. 17. Conduction-radiation results for CO1 with T, 2 500 K .  



INFRARED RADIATIVE ENERGY TRANSFER I N  GASES 269 

and thus Figs. 17 through 19 serve to illustrate the influence of radiative 
transfer upon the temperature profile within the gas. As would be expected, 
the importance of radiation becomes more pronounced as the plate spacing 
is increased. 

For the sake of brevity, comparisons involving the optically thin limit 
will be made only for CO, at a pressure of one atmosphere. These are 
illustrated in Figs. 20 and 21 for wall temperatures of 500°K and 1000"K, 
respectively. In Fig. 20 it is evident that, when radiation is of importance, 
the radiative transfer process very nearly corresponds to the large path 
length limit. Conversely, this indicates that when the radiation is optically 
thin, it is in turn negligible relative to conduction, such that the optically 
thin limit does not constitute a useful limiting solution for the conditions 
illustrated in Fig. 20. This is not the case at higher temperatures, for which 
a greater departure from the large path length limit  exists. This is evident 
from Fig. 21, where the optically thin limit is seen to be the appropriate 
limiting form for small values of L. 
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FIG. 21. Comparison of conduction-radiation solutions for CO, with P = 1 atm and 
T ,  = 100OSK. 

Comparative results for CO, CO,, H,O, and CH, are shown in Figs. 22 
and 23 for a pressure of one atmosphere and wall temperatures of 500°K 
and 1000'K, respectively. In Fig. 22, with the exception of CO,, the results 
do not correspond closely to the large path length limit, although the relative 
positions of the curves coincide very nearly with that indicated by the inter- 
action parameter for large path lengths (see Fig. 15). The only exceptions 
are the CO and CH, curves showing less of a radiative interaction effect, 
relative to C 0 2 ,  than is indicated by Fig. 15. This is evidently a con- 
sequence of departures from the large path length limit for these two gases. 

In  Fig. 23 the relative order of the four curves, for small values of L, is 
characteristic of the interaction parameter for optically thin radiation (see 
Fig. 14). As the value of L is increased, the relative positions of the two 
curves turn into those discussed for Fig. 22. 

From Figs. 17 through 19, i t  is evident that the large path length limit 
constitutes an upper bound upon the influence of radiative transfer on the 
temperature profile within the gas. The same conclusion applies to the 
optically thin limit, since self-absorption is neglected. This fact that both 
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limiting solutions constitute upper bounds on the radiative interaction can 
be employed to estimate whether or not, for a given gas, the interaction of 
radiation may be of importance. 

A final comment pertaining to radiation-conduction interaction involves 
the experimental measurements of Schimmel et al. [37]. The apparatus 
consisted of two parallel plates spaced 2.55 cm apart and maintained at 
different temperatures, such that there was net energy transfer from one 
surface to the other. Temperature profiles were obtained with a Mach- 
Zehnder interferometer for pure CO, and N,O, and for mixtures of C0,-CH, 
and C0,-N,O. The data were compared with analytical results based upon 
the method of solution as employed in the present section. Agreement 
between the experimental and analytical results was excellent. In particular, 
the invariance of the temperature profile upon gas pressure in the large path 
length limit was clearly illustrated. 

C. VIBRATIONAL NONEQUILIBRIUM 

In most radiative transfer analyses the assumption of local thermodynamic 
equilibrium is employed. There are, however, physical situations for which 
such an assumption is not justified. The purpose of this subsection is to 
investigate the possible influence of vibrational nonequilibrium upon infrared 
gaseous radiation. The illustrative physical models are the same as previously 
considered in Sections IV, A and IV,  B. 

Only a limited number of nonequilibrium analyses are available in the 
literature pertaining to infrared radiative transfer. Goody [6] utilized the 
nonequilibrium transfer equation, Eq. (5% to derive an expression for the 
heating rale due to a vibration-rotation band in a plane atmosphere. The 
specific application involved the IS p carbon dioxide band. The linearized 
form of the nonequilibrium transfer equation was eniployed by Gilles [27] 
and Gilles and Vincenti [28] to obtain an expression for the radiative flux, 
with application to acoustics and flow through shock waves. Since an average 
absorption coefficient was used, their analysis is analogous to a modified 
gray gas analysis and does not account for the actual band structure. A 
formulation for energy transfer by radiation and conduction, in  the presence 
of vibrational nonequilibrium, has been presented by Wang [43]. I t  was 
indicated that the source function, in general, satisfies a time-dependent 
equation involving Planck’s function, the mean intensity of radiation, and 
a parameter representing the relative importance of collisional and radiative 
relaxations,. Other nonequilibrium studies pertaining to atmospheric appli- 
cations are given by Thomas [44] and Oxenius [45, 461, and an application 
involving radiation gas dynamics is presented by Mermangen [47]. 
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FIG, 25. LTE and non-LTE results for CO with T,  7 500'K. 
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In the present investigation, the radiative flux equation, Eq. (68), formu- 
lated in terms of the total band absorptance and the nonequilibrium para- 
meter v]  ' v ] , ,  is employed. Results are presented for diatomic gases in general 
and carbon monoxide in  particular. The method of analysis may, however, 
be extended to multiple band gases. This extension to include vibrational 
nonequilibrium will be illustrated for the physical systems described in 
Sections IV, A and IV, B. 

For the case in which radiation is the only mode of energy transfer, a 
combination of Eqs. (68) ,  (73) ,  and (74) yields 

where 

(94) 

For a single-band gas, the definition of I$* is identical to that of Q, given 
by Eq. (77c). Thus, 4* simply denotes a din:ensionless temperature profile 
for non-LTE. As would be expected, Eq. (93) reduces to the single-band 
form of Eq. ( 7 6 )  for LTE (i.e., i I 'y l r  = 0), and a comparison of the two 
equations shows that 

Employing the LTE results for d, as given in Fig. 7, the centerline tem- 
perature is illustrated in Fig. 24 for p = co. Since p is the line structure 
parameter and is proportional to the ratio of mean line width to mean line 
spacing, then ,b' = a3 denotes the limit of overlapping lines. Results for other 
values of /?, corresponding to situations for which line structure is important, 
are qualitatively the same. Figure 24 clearly illustrates the maximum influence 
of non-LTE under optically thiri conditions, with the subsequent diminishing 
of the non-LTE influence as uu increases. Note that the non-LTE results 
yield higher centerline temperatures than the corresponding LTE curve. As 
discussed in Section 111, C, this is a consequence of non-LTE reducing the 
capability of the gas to transmit radiative energy. 

Specific results are illustrated in Fig. 25 for T,  = 500°K. It is evident 
that non-LTE can exert a considerable influence upon the radiative transfer 
process for low pressures. The reason for this, of course, is that y ' q r  
varies inversely with pressure. Similar results are illustrated in Fig. 26 for 
TI  = IOOO'K, from which i t  is seen that the non-LTE influence is very 
small. This is a consequence of the strong temperature dependence of $ q r ,  
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FIG. 26. LTE and non-LTE results for CO with T, -- 1000 K. 

such that the value of q /q r  at 1000°K is approximately two orders of magni- 
tude less than the value for 500°K. 

Considering now the inclusion of molecular conduction, a combination 
of Eqs. (68), (74), and (85) yields the appropriate energy equation as 

where M is defined by Eq. (92), while 

0 = (T  - Tl)'(QLz,jL).  

Equation (96) constitutes the non-LTE counterpart to the single-band form 
of Eq. (86). 

Numerical solutions of Eq. (96) have been obtained by the sanie method 
previously employed for LTE [48], and centerline temperatures are shown 
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FIG. 27. Results for combined conduction and radiation with TI = 500-K. 

in Figs. 27 and 28 for carbon monoxide with T,  = 500°K and 1000"K, 
respectively. Recall that non-LTE effects are most prcnounced for small 
path lengths. With reference to Fig. 27, however, this corresponds to the 
situation for which conduction is the predominant mode of energy transfer. 
Thus, for a given pressure, the non-LTE influence upon total energy transfer 
within the gas will vanish for either small or large values of L. The former 
corresponds to  negligible radiative transfer, while the latter denotes the 
large path length limit. In other words, if nonequilibrium radiation is to 
have a significant influence upon the energy equation, then the physical 
dimension of the gas system must  be sufficiently large for radiation to play 
a dominant role, but it cannot be so large that the large path length limit 
is approached. In addition, of course, both pressure and temperature must 
be relatively low. 

D. RADIATIVE EOUICIBKIUM 

The preceding analyses have dealt solely with the situation for which net 
energy transfer is between the gas and the bounding surfaces, i.e., there is 
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FIG. 28. Results for combined conduction and radiation with T I  7 1000-K 

100 

no  net radiative transfer from one surface to the other. I t  will thus be of 
interest to consider briefly the opposite extreme for which the net radiative 
transfer is strictly between the surfaces. This is the case of radiative equili- 
brium, for which, with reference to Fig. 6, the surface temperatures T ,  and 
T,  are not equal, and there is no other mechanism of energy addition or  
transfer within the gas. The energy equation is thus 

ciqR 'dJ = 0. 

For the sake of brevity, consideration will be given only to the large path 
length limit, and upon sunlining Eq. (68) over all bands, linearizing the 
resulting equation through the use of Eq. (74), and taking the large path 
length limit for which x'(ir) = I  '11, the integral equation describing the 
temperature profile for radiative equilibrium follows to be [49] 

where again 5 = y L,  while 

0 = ( T  - 7-?) ( T ,  - Tz) .  

(97) 
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As with Eq. (go), the summation over individual bands vanishes in the 

(98) 

large path length limit. The solution to Eq. (97) yields [38] 

0(() = 4 + (l/lr) sin-' (1 - 2r). 

This temperature profile is illustrated in Fig. 29 together with the result for 
the diffusion (Rosseland) limit. 

< = Y/L 

FIG. 29. Temperature distribution for radiative equilibrium in the large path length 
limit. 

The net radiative heat flux between the plates may in turn be determined 
by employing Eq. (98) in the expression for the radiative flux q R ,  with the 
result that [49] 

This has been evaluated for several gases and is illustrated in Fig. 30. Since 
the ordinate value of unity corresponds to the transparent limit, the effective- 
ness of each of these gases i n  reducing the net radiative flux is clearly 
illustrated. Furthermore, for conditions under which the large path length 
limit does not apply, it may readily be shown that Eq. (99) constitutes a 
lower limit on radiative transfer. 

It is interesting to note the difference between the present results and 
those of Section 111, A, which dealt with a uniform heat source within a 
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PL, atm-cm 

FIG. 30. Radiative flux results for radiative equilibrium and TI - 500 K.  

gas bounded by symmetrically heated plates. Again these constitute two 
opposite extremes in that the net radiative transfer is solely between surfaces 
in the present situation, whereas it is between the gas and the bounding 
surfaces in the former case, and recall from Section 111, A that the band 
intensities S, d o  not appear in  the large path length limit. This absence can 
be traced to the fact that the central portion of a band, since it is saturated 
in the large path length limit, has no effect upon the net radiative transfer 
between the gas and the bounding surfaces. In other words, net radiative 
transfer takes place only in the wing regions of the bands, and the extent 
of the wings depends only on A O i .  This is not the case in  the present situation, 
however, since the reduction in  the net radiative transfer between surfaces 
will depend upon the extend of the saturated central portion of  the bands, 
and hence Eq. (99) contains both of the band parameters AOi and Si. 

V. Concluding Remarks 

The intent of the present chapter has been to investigate the basic features 
of infrared gaseous radiation through the use of extremely simple and 
illustrative physical models, and no attempt has been made to describe 
specific applications. There does exist. however, a body of literature per- 
taining to the inclusion of spectroscopic information into radiative transfer 
analyses involving the striicture and dynamics of planetary atmospheres. 
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In such investigations infrared gaseous radiation constitutes an important 
mechanism of energy transfer, and for the most part, as in the present 
chapter, the kernel function for the radiative flux is formulated in  terms of 
the band absorptance (or transmission function). Normally, however, 
attention is directed towards numerical solutions for specific planetary 
conditions, and little emphasis is placed upon the basic features of the 
radiative transfer process. 

A partial summary of atmospheric radiation analyses includes the investi- 
gations of Manabe and co-workers [50-531 for Earth; studies of the structure 
of the Martian atmosphere by Prabhakara and Hogan [54], Ohring and 
Mariano [55, 561, and Gierasch and Goody [57, 581; and the analysis of 
the atmosphere of Venus above the cloud tops by Bartko and Hanel [59]. 
A wealth of information may further be found in the book by Goody [6]. 
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NOMENCLATURE 
total band absorptance, cmr I 

total absorptance of a single 

band width parameter (cor- 

dimensionless band ahsorp- 

rotational constant, cni- ' 
blackbody intensity at local 

line 

relation quantity), cni- ' 

tance, A = A / A o  

temperature 
B,,,), B2,,, spectral surface radiosities, 

(watts-cm- Z)/cni- I 
C speed of light 
e ,  Planck's function, (wntts- 

cm-Z)/cm- ' 
e (,,,, c(,,~ Planck's function evaluated at 

band center 
eICol, ,  Planck's function evaluated at 

temperature TI 
E" vibrational energy 
E"' equilibritim vibrational energy 
/ I  Planck's constant 
H gas property for  the large path 

length limit, Eq. (82) 

specific intensity 
source function 
Boltzmann constant 
gas property for thc optically 

distance between plates, cm 
radiation-conduction interac- 

tion parameter, Eq. (92) 
rad ia t ion-cond uct ion interac- 

tion parameter, Eq. (89) 
gas pressure, atni 
eqtiivalent (effective) broaden- 

ing pressure 
total radiative heat flux, 

watts/cni2 
spectral radiative flux, (watts- 

cm-Z)/cm- I 
distance along direction of 

radiative propagation 
total band intensity. 

at111 - I ~ cn1- 2 

line intensity 
temperature, kinetic tempera- 

ture ' K  

thin limit, Eq.  (79) 
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reference temperature (equili- 0 
brium) 

surface temperature 
dimensionless coordinate, u = 

dimensionless path length, uo 

physical coordinate 
spectral band coefficient 
line structure parameter 
rotationally averaged line half- 

width, Eq. (35) 
vibrationally averaged line half- 

width, Eq. (39) 
line half-width, cm- 
surface emittance 

SPY/Ao 

= SPL/Ao 

vibrational relaxation time, sec R 
radiative life time of vibrational 

dimensionless temperature, Eq. 

w 

state, sec wo, wc 

(86) 

dimensionless temperature, Eq. 

equilibrium spectral absorption 

Planck mean coefficient, cm-I 
mean absorption coefficient, 

thermal conductivity, (watts- 

frequency 
density 
Stefan-Boltzmann constant 
dimensionless function, Eq. 

dimensionless function, Eq. 

solid angle 
wave number, cm-I 
wave number at  the band 

(97) 

coefficient, cm-l 

ii = SPjAw 

cm-’)/ ‘K 

(77c) 

(94) 

center, cm-’ 
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I . Introduction 

In the engineering profession. it is most desirable to be able to make 
accurate predictions on the performance of equipment and installations . 
The required accuracy is established on the basis of economic and safety 

285 
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factors. The possible accuracy of the predictions, however, depends on the 
complexity of the phenomena involved and on the knowledge of the physics 
of these phenomena. 

At present, installations costing tens of millions of dollars are being built. 
Both capital and running costs depend on the accuracy of predicted per- 
formance, and with such sums involved, in modern technology one obviously 
can not afford to be inaccurate. Fortunately, designers at present have at 
their disposal digital computers-powerful tools i n  the field of design. 

In a great variety of the present-day equipment and installations turbulent 
flows are encountered. In a substantial number of them turbulence effects 
are among the most important design parameters. I t  is most unfortunate, 
then, that the present knowledge on the physics of turbulence is quite in- 
adequate. In fact, turbulence is one of the few unsolved problems of modern 
mechanics. 

Important turbulence studies started at the beginning of the century. They 
were initiated by attempts to solve the problem of heat and mass transfer 
from the earth’s surface [ I ] .  At present, we are aware of the fact that the 
solution of the problem lies in the hydrodynamics of flow. However, turbul- 
ence studies involving heat and mass transfer are rare and mostly concerned 
with the global, time-averaged effects of turbulence. 

As a result of an impressive number of theoretical and experimental 
studies conducted over the last fifty years, our knowledge of the time- 
averaged effects of turbulence is substantial. Procedures exist which allow 
us to make predictions with fair accuracy in a great variety of flows, involving 
the effects of compressibility, heat and mass transfer, chemical reactions, 
etc. ; but our knowledge, being phenomenological, is not general enough. 
Whenever a new complex flow configuration is encountered, because of the 
demands of technology, we have to t u r n  again to experiment and form new 
phenomenological models. There is, therefore, an urgent need for a better 
understanding of the physics of turbulence. 

Turbulence is a complex statistical phenomenon. Wall turbulence is even 
more complex as the randomness of the phenomenon is influenced by a 
certain organization i n  the structure. I t  is therefore necessary that the turbul- 
ence be treated statistically. It  is only recently that statistical models have 
been introduced i n  the theoretical analysis of wall turbulence. Experimental 
wall turbulence studies are as a rule nonstatistical, with very rare exceptions. 
I t  is believed by the author that a statistical approach in the experimental 
investigation of wall turbulence could have an important role i n  the solution 
of the problem. 

The main purpose of the present article is, therefore, to draw attention to 
to the importance of the statistical approach in wall turbulence experimental 
studies. Existing experimental techniques are reviewed from this standpoint. 
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A wall turbulence experimental study, made by the author, is presented and 
possible statistical approach to the analysis of the data is given. Results of 
the analysis are discussed from the standpoint of probable future develop- 
ments. 

11. Turbulence Problem 

A. PREDICTIONS AND MATHEMATICAL MODELS 

An engineer is usually concerned with the time-averaged effects of turbul- 
ence on equipment-usually, but not always. Fluctuations of the wall 
pressure and the wall heat flux, provoked by turbulence, have been experi- 
mentally detected. For some equipment these fluctuations might have un-  
desirable consequences, and have to be taken into consideration. However, 
even the fime-averaged effects, of prime interest, are still not well established 
in many cases, and are in  need of reliable prediction procedures. 

Reynolds was the first to introduce time-averaging in the Navier-Stokes 
equations. In  the resulting equations, unknown quantities appear i n  the form 
of second-order correlations of the turbulence components, ux. A theory 
for the determination of these quantities does not exist and phenomeno- 
logical relations have to be introduced in order to handle the problem. A 
great number of prediction methods, based on various phenomenological 
models, have been proposed, and some of them used. In fact, the number 
and variety of these proposals create acute problems of choice for the users. 
A conference was held at Stanford in 1968 with the aim of providing a 
comparative evaluation of the various prediction procedures for boundary 
layer flows [ 2 ] .  

Prediction procedures proposed so far fall into two large groups. So- 
called “integral methods” are based on the integration of the coupled 
ordinary differential and algebraic equations. Potentially more powerful, 
and general, are “differential” methods which have appeared recently with the 
accessability of digital computers and advances in numerical analysis. These 
methods require numerical integration of coupled partial differential and 
algebraic equations. 

The conclusions of the Evaluation Committee of the Stanford Conference 
illustrate well the state of the art [3]. I t  was found that a dozen or so prediction 
methods give essentially equally good predictions insofar as discrepancies 
in the experimental data on smooth-wall, two-dimensional, incompressible 
flows are taken into consideration. It  is not surprising, then, that better 
integral methods predict as well as better differential procedures. This also 
results from the fact that the underlying physical evidence is the same. One 
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of the conclusions of the Evaluation Committee was therefore that there is an 
important need for new and more accurate experimental data. 

To illustrate the kind of experimental data currently being used a simplified 
differential procedure for the steady, smooth-wall incompressible boundary 
layer flow is examined. The corresponding momentum equation is 

Different procedures vary i n  correlating the unknown Reynolds stress, 
-puIu2, with other parameters to make the system of equations determinate 
[4]. The simplest employ the turbulent viscosity concept in which, following 
Bousinesq ( I  877), i t  is assumed that 

(2.2) 

where p T  is the “turbulent viscosity,” which has to be somehow related 
to the other properties of the flow. In 1925 Prandtl proposed the following: 

/-(T = P ’ LM . U t u r b ,  

in which the length, L,, is the “mixing length,” and U t u r b  is a representative 
random velocity for which Prandtl proposed that 

U t u r b  = Livl l d u l / a x Z I ?  

so that 

PT = PLM’ l a u l / a x Z l  (aul/axZ). (2.3) 

An algebraic relation for L ,  has to be prescribed, on the basis of the exist- 
ing experimental evidence, and the problem is solved elegantly and efficiently. 
The experimental evidence needed is in the form of data on the mean velocity 
distributions for various flows. The procedure predicts with sufficient 
accuracy a whole class of simple flows. Only the algebraic relation for L,  
has to be changed from flow to flow. 

Turbulent viscosity, I f T ,  is essentially a property of the fluctuating motion. 
With the aim of improving the universality of the model Kolmogorov (1942) 
and Prandlt (1945) proposed to relate / - i T  to the kinetic energy of turbulence. 
Following Prandtl, 

“ t u r b  = cg&, 

where 
- - -  

ek = o.5(U1’ + 21,’ + u,’),  

so that 
- 

,uT = pc, * L,J~,. (2.4) 
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The kinetic energy of turbulence is determined from an additional differential 
equation : 

The terms on the right represent turbulence energy generation, diffusion, and 
dissipation, respectively. Introduction of the additional differential equation 
does not make the system more determinate. On the contrary, it leads to the 
appearance of new unknowns, among them triple correlations like 2. 
New hypotheses have therefore to be made. For instance, diffusion and 
dissipation terms could be approximated by [4] 

- -  
-(pu,e’ + t t 2 p ’ )  = cDMW%), 

where C, and C, are new constants, and L, a new length scale. These have to 
be prescribed by turning to available experimental data. Experimental data 
on turbulence kinetic energy and shear stress distributions are needed, in  
addition to the data on mean velocities. 

In  pursuit of the methods which would be general for a wider class of 
flows some authors determine L ,  from another differential equation, with 
the corresponding introduction of a new set of constants to be determined. 
Another approach is to abandon the concept of turbulent viscosity-a 
formally introduced parameter-and to solve a differential equation for the 
turbulent shear stress, along with the differential equation for the kinetic 
energy or an equivalent quantity. A particular method of this kind, proposed 
by HanjaliC [ 5 ] ,  requires the determination of seven empirical constants 
and a prescription for a relation for the length scale. 

Mathematical models even more elaborate have been proposed. For 
instance, the proposal by Davidov requires the integration of twenty-three 
coupled differential equations [6]. The consequences are always the same, 
The introduction of a differential equation for the nth-order correlation always 
leads to  the appearance of new unknowns in the form of (n  + 1)th-order 
correlations. The introduction of new differential equations is appropriate 
only when it leads to higher generality, and only when a plausible hypothesis 
and reliable experimental evidence allow the determination of the higher 
order correlations. 

Theoretically all these mathematical models are comprised in the general 
analytical treatment of the turbulence problem formulated in 1924 by Keller 
and Friedman [6]. This consists of the derivation of the differential equations 
for the correlations of the nth order, with the determination of all of these 
correlations being equivalent to the determination of the probability dis- 
tributions of the hydrodynamic quantities in space. However, any finite 
subsystem of this infinite system of equations is undetermined. 
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So far we have spoken only of the hydrodynamics of flow. Turbulence 
effects on the heat transfer rates, or in general on the rates of transport of any 
scalar quantity, are of great importance. If we are interested in the time- 
averaged effects of turbulence on heat transfer we have to perform time- 
averaging of the enthalpy transport equation. As in the case of the momentum 
equation (2.l), unknown second-order correlations of the type Kt appear in 
the resulting equation. The further procedure is analogous to the hydro- 
dynamic case. It is assumed that the turbulent heat flux is related to the 
gradient of the mean temperature by 

q = -AT grad T, (2.6) 

where 
AT = PCpLTUturb? 

and L, is a mixing length equivalent. The ratio 

Pr, = p7C,,/l., = L,/LT 

is called the turbulent Prandtl number. The random velocity uturb may 
again be taken as 

uturb = LM lau,/ax21, 

in which case we have 

AT = pC,LM L, lilU,/d.~,I. (2.7) 
In  this case the problem is solved if an adequate relation for the L,, or the 
Pr,, could be prescribed. 

Alternatively we may take 

Uturb = c ~ &  
in which case we have to solve an additional differential equation for ok, 
and determine additional constants. 

It is of course possible to follow even further the hydrodynamic procedures. 
Reliable data on the higher order correlations involving temperatures have 
to be found for that. However, the prediction methods in current use are 
most often based on Eq. (2.7). 

B. STATISTICAL MODELS 

Turbulence is essentially a statistical phenomenon. All the quantities 
involved are therefore random variables characterized by corresponding 
probability distributions. The complete solution of the turbulence problem 
would consist of the determination of the time evolution of the probability 
distribution of the hydrodynamic, enthalpy, and other fields, starting from a 
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known set of distribution functions at the initial moment and employing the 
relevant physical laws [6]. The task is unfortunately too difficult at present. 

The statistical theory of free turbulence is in an advanced stage of develop- 
ment. An excellent account of this theory is given in the book by Monin and 
Iaglom [ti]. Recently, true statistical measurements in grid turbulence have 
been made by Frenkiel and Klebanoff [7] and van Atta, Yeh, and Chen 
[8, 91. However, as pointed out by Townsend [lo], wall turbulence is of a less 
random and more organized nature. This organization in the wall turbulence 
structure has been experimentally determined and various eddy-structure 
models have been proposed. So far very little of the existing information from 
the structure studies has been included in  the current prediction procedures. 

Recently, attempts have been made to introduce statistical methods into 
wall turbulence analysis, as well as to include available data on wall turbul- 
ence structure. One possible approach is based on the use of the Cameron- 
Martin-Wiener method for the investigation of nonlinear random processes 
by expanding them in infinite series. The first term of the series is an exact 
Gaussian process and the higher order terms contribute successive corrections 
[ I  I ,  121. Another approach, more under the influence of the structure studies 
approach, consists of representing wall turbulence as a random superposition 
of appropriate characteristic waves [ 131. The development of both approaches 
is strongly dependent on the experimental statistical studies in the wall 
layers. 

C. ROLE OF THE EXPERIMENT 

Both physical and mathematical models of the wall turbulence rely on 
experimental evidence. Integral prediction methods and simple differential 
procedures, such as the mixing length concept, are based on experimental 
data on the characteristics of the mean motion, such as wall shear stress and 
mean velocity distributions. More elaborate models require experimental 
evidence of second, or higher order statistical moments of the relevant 
quantities. The more general the model, the higher is the order of the statistical 
moments for which information is needed. Statistical models require informa- 
tion on the repartition of the complete probability distributions, as well as 
the correlation functions. 

At the Stanford Conference i t  was found that there is sufficient reliable 
experimental data only for the smooth-wall, two-dimensional, incompressible 
flows. Even for these simple flows the best data on the mean flow parameters 
have larger uncertainties than desired; in fact, larger than necessary to 
evaluate thoroughly various prediction procedures. 

We might conclude that experiment plays a very important role in wall 
turbulence research. However, it must be stressed that the experimental 
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results are useful only when certain requirements on the quality of the 
experiment are met. Regarding mean flow parameters the accuracy is of prime 
concern. However, a move towards the solution of the wall turbulence 
problem on a more general basis depends essentially on the experimental 
data on the fluctuating motion parameters. Experimental evidence of the 
second- and third-order moments and correlations is needed at present, for 
the prediction procedures in current use. Such data, more or less reliable, do 
exist. It is felt, however, that real progress depends on the true statistical 
experimental studies in  wall turbulence, which are at present very rare. 

111. Current Experimental Methods 

A. MEASUREMENTS IN TURBULENT FLOWS 

A description and critical review of all the measurement methods employed 
in turbulent flows would easily constitute a book. Therefore, only measure- 
ment methods of the quantities which are relevant to the general scope of the 
paper are mentioned. As turbulence is a dynamic phenomenon we will not 
include the methods which are insensitive to the fluctuations of the relevant 
quantities. 

The importance of the fluid dynamics of flow has already been stressed. 
Of the two relevant quantities in an incompressible, isothermal flow, velocity 
and pressure, methods only have been developed for the measurement of the 
instantaneous velocities. Of all of these methods employed in wall turbulence 
studies, hot-wire anemometry is the one used most often, as i t  is the easiest 
to perform and very suitable for dynamic measurements up to high fre- 
quencies. Some of the other existing velocity measurement methods have 
certain advantages over the hot-wire method. These will also be reviewed 
shortly. 

It would be desirable to have more information on the instream pressure 
fluctuations. Unfortunately methods involving pressure fluctuation measure- 
ments in the wall layers have not been developed. Quite recently such a 
method was developed and used in the study of a two-stream mixing layer 
[14]. It is based on a hot-film, bleed-type pressure transducer installed in a 
1 mni diameter tube. Because of the dimensions of the tube, the method is 
not suitable for measurements in the vicinity of the wall, but can be used in 
the regions away from the wall. 

As we are basically concerned with heat transfer, instream temperature 
measurement methods are also reviewed. 

Turbulence is a random phenomenon and all the parameters of a turbulent 
flow have to be random. This applies to the parameters at the wall as well, a 
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fact which was recognized only recently. Fluctuations of the wall pressure, 
wall shear stress, and wall heat flux have been detected experimentally. 
Suitable methods for measuring wall temperature fluctuations have not been 
developed up to now. Wall pressure fluctuations have been measured by a 
number of investigators, the best results having been obtained with sensitive 
piezoelectric transducers mounted flush with the wall [15, 161. Because of the 
dimensions of the sensors, wall pressure measurements have, in  general, 
inadequate space resolution. Measurements of the wall shear stress fluctua- 
tions have been made by indirect methods based on analogies with heat and 
mass transfer. Heat transfer methods for the skin friction measurement are 
analogous to the hot-element anemonietry in velocity measurements. 
Sensors consist of a micron thick resistor element having a response time of 
about 0.04 psec [17]. Methods based on analogy with mass transfer are, in 
general, applicable in liquid flows only. They are based on an electrochemical 
reaction carried out at the surface of an electrode mounted flush with a wall 
[18, 191. The accuracy of both methods depends on the accuracy of the 
calibration. Space resolution is also not wholly adequate. Fluctuations in the 
rate of heat transfer from a solid surface have also been measured using 
hot-film sensors [20]. 

The phenomena at the wall are the consequence of the turbulence charac- 
teristics of the in-stream quantities-velocity, pressure, and temperature. 
Fluctuations of the wall shear stress can be deduced from the instantaneous 
velocity profile gradients at the wall [21] or from the probability distributions 
of the velocities in the viscous sublayer [22]. Direct measurement of the wall 
parameter is of most value in  cases where there is a lack of information on the 
corresponding in-stream quantities. 

B. HOT-WIRE ANEMOMETRY 

The hot-wire, or hot-film method for the velocity measurement is an 
indirect method. It is based on the relationship which exists between the rate 
of cooling of an electrically heated sensing element and the velocity of the 
fluid flowing around it. Heating can be achieved either by maintaining a 
constant current through the.wire or by keeping its resistance quasi-constant 
by suitable electronic means. The latter, constant temperature mode of 
operation has definite advantages and has been almost universally used, 
since developments of solid state electronics have produced cheap and reliable 
amplifiers. Although the sensing element could have various forms, a 2 to 
10 pm wire is most often used in moderate velocity gas flows. 

An overall cooling rate of the wire 
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consists of heat loss by convection (Qc,), conduction to the supports (Q,), 
and radiation (QJ. For most applications, heat loss by radiation could be 
neglected. However, conduction to the supports for finite wire lengths is 
always present. For this reason the signal from the wire depends not only on 
the conditions pertinent to the convection from the wire, but on the overall 
configuration of the probe as a whole, including such influences as the 
inclination of the supports, the means by which the wire is attached to the 
supports, etc. [23]. To lessen these undesirable effects, often difficult to 
control, copperplating the ends of the wire has been carried out lately [23]. 

Although by copperplating the influence of the supports is not eliminated, 
it is diminished and, what is also important, it is better defined, especially 
concerning the contact between the wire and the supports. Since the conduc- 
tion to the supports can not be neglected, the various cooling laws proposed 
in the literature, such as King’s law or Collis law, are pertinent only to very 
long wires and are not directly applicable for wires of finite length. Careful 
calibration of the probes is thus a necessity. With copperplated wires of 
approximately the same length-to-diameter ratio, the form of the relationship 
between the signal and the velocity does not change from one probe to 
another. This greatly facilitates the tedious job of calibration and necessary 
recalibration of the probe after some hours of use. 

The probes are usually calibrated in very weak turbulent flows. In these 
conditions one can speak of the steady state thermal equilibrium of the wire. 
For a linear relationship between the wire resistance and its temperature the 
thermal equilibrium is expressed by 

(3.1) E2jRw = H(Rw - R,)/PRo, 

where R ,  and R, are wire resistances at the wire and the fluid temperature, 
and H i s  an overall heat loss coefficient. 

The behavior of copperplated wires has been studied extensively by Davies 
and his group [23]. They found that the calibration of the wires is best 
described by a relation of the type 

E 2  - EoZ = k * u” cos”’y, (3.2) 
where U is the velocity, y the angle between the velocity direction and the 
normal to the wire, Eo the potential difference at zero velocity, and k ,  n, nz 
are empirical parameters. k and n are, i n  fact, not constant but both depend 
on the fluid velocity and the length-to-diameter ratio, //d. The variation of 
these parameters with velocity is very large at low velocities. It was found 
that the difference (n - m) is constant for a given probe but depends on the 
ljd ratio, the probe configuration, etc. [24]. 

In nonisothermal flows the influence of the flow temperature has to be 
taken into consideration. For moderate temperature changes it can be 
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assumed that the signal is proportional to the difference between the 
temperature of the wire and the flow temperature, so that the potential 
difference ET at a temperature T is related to the potential difference E, at a 
standard temperature Ta by 

R,  and R, being unheated wire resistances at temperature T and T,, respec- 
tively. The influence of the flow temperature can be compensated for, in  the 
case of slow temperature changes, by using another temperature sensing 
element. The influence of temperature fluctuations has to be taken into 
consideration in the determination of the velocity fluctuations. 

From the form of the relation Eq. (3.2) it is seen that the wire response is 
strongly nonlinear to a velocity change, especially at low velocities. Elec- 
tronic linearizers are now commercially available. With these, one may chose 
parameters k and 17, for an operation in the given velocity range, and obtain 
a linearized output necessary for the precise determination of the intensity 
of fluctuations. However, under conditions of low velocity and higher 
turbulence intensity, which is usually the case in  wall turbulence studies, no 
single k and ?I  value can be selected for the whole range of instantaneous 
velocities. Under these conditions, other means of linearization have to be 
employed, such as the use of a digital computer. 

In turbulence studies the fluctuating flow field is of greatest importance. 
The question then is: are the results of the calibration under conditions of 
very low turbulence level applicable to the determination of the fluctuating 
flow characteristics? The usual analysis is based on the assumption that the 
thermal inertia of the wire could be neglected so that the relation Eq. (3.2) is 
still applicable with E and U representing the instantaneous values. In fact, 
the wire is sensitive to velocity vector fluctuations so that, even if we assume 
that the component of the velocity parallel to the wire has negligible effect, 
the wire responds to both normal components. This makes the right side of 
Eq. (3.2) a very complicated function of the instantaneous velocities i n  the 
two normal directions (u l ,  u 2 ) .  I t  is usually assumed that the u ,  component 
is much more effective than the u2 component, so that the wire is essentially 
measuring the u I  fluctuations. I n  the case of high turbulence intensity this is 
not true, and thus corrections have to be made. This is normally done by 
binomial expansion of the right-hand side of Eq. (3.2), with subsequent 
averaging and more-or-less severe assumptions about the relative orders of 
various terms [ 2 5 ] .  With turbulence intensities of 20% or thereabouts this is a 
tedious and very inaccurate job. Some improvements on this procedure for 
higher turbulence intensities have been proposed by Siddall and Davis 
[26], who make certain assumptions about the nature of the fluctuating 
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voltage. They assume that the fluctuating component of the wire voltage has 
a square wave form-a crude enough assumption, but the approach being 
statistical it is basically much better than the usual procedure. 

In fact, fluctuating velocity components are characterized by probability 
density distributions, which might depart more or less from the Gaussian 
distribution. The fluctuating voltage, being a function of the two normal 
velocity components, is then characterized by the form and the parameters 
of these probability density distributions, as well as by the correlation 
coefficient between the velocity components, the averaging being performed 
statistically over the perimeter of the wire. We shall return to this later in 
Section VII. 

In addition, the time constant of the hot wire operated in a constant 
temperature anemometer circuit has a small but nonzero value, and the 
thermal inertia of the wire has to be taken into account. As shown in an 
analysis by Comte-Bellot [27], the neglect of thermal inertia could account 
for a large error in the determination of the odd moments of the probability 
density distribution and the evaluation of the power spectra under conditions 
of higher intensity turbulence. The error is strongly dependent on the nature 
of the fluctuations, i.e., on the probability density distribution of the velocity, 
and can be evaluated only by use of an analog computer. 

A serious shortcoming of the hot-wire method follows from the fact that 
the wire is not sensitive to the direction of the velocity vector. For the deter- 
mination of the instantaneous velocity components several wires, differently 
orientated to the flow, have to be employed. Cross-wire-probes are commonly 
used, with three-wire probes being already available commercially. Even 
neglecting the mutual interference of the wires, these probes are, however, 
not applicable to most turbulence studies near walls, due to their dimensions 
as compared to the thickness of the near-wall layers. Even away from walls 
the use of slanted wires is questionable when the turbulence intensity is high. 
With a slanted wire all three components of the fluctuations influence the 
signal, with the effectiveness in function of the yaw angle being difficult to 
evaluate. 

Another serious shortcoming of the method, as employed in wall 
turbulence studies, is the so-called “wall effect.” In fact, very near the wall 
the rate of cooling of the wire, and of the supports as well, is modified by the 
presence of the wall, increasing the apparent voltage difference. The most 
serious study of the problem has been done by Wills [28]. By careful nieasure- 
ments, he has established the corrections to wire readings as a function of the 
distance from a wall in a well-defined laminar flow. When employed in a 
turbulent flow, with the same probe and in  the same channel, these corrections 
have produced overcorrected results for no apparent reason. To correlate 
the results for turbulent flow in the wall vicinity, Wills was obliged to 
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introduce an empirical constant B = 0.5 in the determination of the effective 
velocity U,: 

where U is the uncorrected velocity and U ,  the velocity corrected by the use 
of laminar corrections. Wills’ corrections have been used successfully by 
many investigators. Coantic [29] proposed an improvement of the procedure 
which takes into account the influence of the probe configuration, wire l/d 
ratio, etc. The voltage difference as a function of the distance from the wall in 
zero velocity is first established for a given probe, and then the corrections 
given by Wills are applied. 

Some studies of wall turbulence have indicated that the velocity is not 
uniform i n  the direction normal to the flow and parallel to the wall [30]. 
The space resolution of the wire is inadequate in the direction parallel to the 
wire. Information regarding the turbulence structure in this direction, 
therefore, could not be detected by a hot wire. This then represents another 
shortcoming of the method. 

U, = U - B(U - U J ,  

C .  OTHER VELOCITY MEASUREMENT TECHNIQUES 

Numerous other methods for velocity measurement are used which 
reflects the fact that one cannot be wholly satisfied with the hot-wire 
technique. We shall briefly review only those techniques which have potential 
advantages over the hot-wire method in any respect. 

It is often useful to have an insight into the instantaneous phen9mena in a 
whole region of the flow. The hot wire, being a single probe instrument, 
cannot provide information simultaneously over an extended region. Visual 
techniques, based on the photographic registration of the instantaneous 
velocities or even whole velocity profiles, have this possibility. In addition, 
these are direct measuring techniques since the velocity is determined from 
measurements of length and time. In the important advantages of the visual 
methods we can also include the possibility of the determination of velocity 
components, even in the wall vicinity, as well as a good space resolution in all 
threz directions. 

Visual techniques have to employ some kind of tracers. Valuable results 
have been obtained in steady flow with solid particules a few microns in 
diameter [31,32]. In unsteady flows, and the instantaneous phenomena in 
turbulence are unsteady, the paths of the particles do not provide all the 
necessary information as the times associated with given particle locations 
are not known. This deficiency is overcome in the combined time-streak- 
marker hydrogen bubble technique developed at Stanford [30,33]. Hydrogen 
bubbles, few microns in diameter, are generated at a fine wire acting as an 
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electrode. The bubbles are made visible by intense lighting at an oblique 
angle to the viewing direction. The wire has short sections coated with insula- 
tion at regular intervals, which provide marking in space, and is pulsed at 
regular time intervals. Motion picture photography of the combined tinie- 
streak markers thus produced allows the determination of the instantaneous 
velocities over a whole range of the flow. Wires can be placed parallel or  
normal to the wall for the corresponding velocity profile determination. 
Very good quantitative results have been obtained with this technique in 
low-speed water flows, revealing very interesting features of the wall 
turbulence structure. 

Another interesting visual ttxhnique was developed in  Toronto [34, 351. 
This technique was based on flash photolysis-an ability of certain essentially 
colorless solutions to become colored under exposure to high intensity light 
or laser beams. Whole lateral velocity profiles are made visible by intense 
illumination of the trace at  regular time intervals and employment of a high 
speed camera. As no extraneous tracers are introduced in  the flow, the 
technique has the great advantage of being completely nondisturbing. 
However, as only time-marking and no streak-marking is employed, the 
technique is in other respects inferior to the combined time-streak-marker 
methods. 

Apart from being, in general, restricted to liquid flows, visual techniques 
have in common two other more serious disadvantages. The time involved in 
reducing film data to velocity is considerable, even if a film reader is employed. 
In addition, high frequency fluctuations, over 20 Hz or so, are i n  general 
undetectable by visual techniques. These shortcomings make visual 
techniques basically unsuitable for statistical analysis. 

Optical methods have recently begun to be employed for the velocity 
measurement [36 ] .  Of these, the technique based on the Doppler shift of 
coherent laser light scattered from particles introduced i n  the flow has been 
successfully employed in liquid flows [37]. Durst and Whitelaw [38] have deve- 
loped a new optical geometry and obtained preliminary results in applying the 
laser-Doppler method to gaseous flow. The method has the combined advan- 
tages ofthe hot-wire and the visual techniques. It is essentially direct, probe- 
less, sensitive to flow direction and the high frequency fluctuations, and wholly 
suitable for statistical analysis. The main disadvantage of the laser-Doppler 
anemometer is that i t  is still in the development stage. The problem of the 
space resolution of the method has also to be solved. 

With the exception of flash photolysis technique, visual and optical 
methods share with the hot-wire method a common deficiency. This is the 
wall effect which is important in  close-to-the-wall investigations. Not much 
is known of this problem in visual and optical techniques except that it is 
present. 
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D. TEMPERATURE MEASUREMENT 
Experimental investigations of the wall turbulence structure in non- 

isothermal flows are rare. For the determination of the temperature fluctua- 
tions and the velocity-temperature correlations they all employ sensors in 
the form of thin wires a few microns in diameter. The wires, acting as 
resistance thermometers, are preferred over microthermocouples because of 
the lower thermal inertia and smaller dimensions. More sophisticated 
temperature measurement methods, such as the pyroelectrical effect, have 
not been used in these studies. 

For temperature measurements only, single wires are used [3942]. 
Platinum or tungsten wires, 2 to 5 pm in diameter, are supplied with a 
constant current. of 0.5 to 5 mA. With these small currents, wire heating is 
negligible so that the velocity influence is eliminated. Instead of metal wires, 
Blom [43] employed 5 pm quartz wires covered with a 0.1 pm thick layer of 
platinum. The response time of the sensors is from 0.1 to 1 msec, which 
makes them suitable for measuring temperature fluctuations. However, an 
amplification of the order of lo3 is necessary. For high resistance sensors, 
the signal-to-noise ratio can be kept within the permissible range. 

In turbulence studies simultaneous velocity and temperature measure- 
ments are of prime interest. Theoretically, this could be achieved by a single 
sensor as the wire could be made sensitive to both velocity and temperature 
fluctuations. However, theoretical models allowing the separation of the two 
influences on the signal have not been developed. In practice two sensors 
separated in space are employed, with the corresponding sacrifice in space 
resolution which might become critical in measurements close to the wall. 
The circuits of the two sensors can be independent [4144] or a combined 
electronic circuit can be designed so that a velocity signal independent of 
ambient temperature fluctuations can be obtained [45]. 

In general, the supports of the temperature sensors are not at the same 
temperature as the wires. An appreciable amount of heat may be conducted 
along the supports in high temperature gradients near walls. Corrections for 
this effect can be applied in the case of mean temperature measurements. 
The influence of this effect on fluctation measurements is not well established. 

IV. Survey of Illustrative Experimental Results 

A. FLOWS WITHOUT PRESSURE GRADIENT ALONG SMOOTH WALLS 

1. Isothermu1 Flows 

It is quite natural that the most complete set of experimental evidence 
exists for the simplest flows-isothermal, incompressible, zero-pressure 
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gradient flows along smooth walls. In  fact experimental turbulence studies of 
such flows are quite numerous, but it is out of the scope of this article to 
review them all. Somewhat arbitrarily we shall restrict ourself to those 
studies which have produced turbulence data in the region 0 < y +  < 40. 
The easiest turbulence characteristic to measure is the rms values of the 
streamwise velocity component, k ,  = JQ. Again, mention will be made 
only of the experimental investigations which have in addition provided 
information of some of the other characteristics. 

With no intention of being exhaustive a list of such studies is given in 
Table I. As would be expected, most of the studies employed the hot-wire 
technique in air flows. However, also included are some studies in liquids, 

TABLE I 

WALL-TURBULENCE EXPERIMENTAL STUDIES 

+ 
Author Ref. Year Flow Fluid Technique Re Ymin 

Laufer 
Laufer 
Klebanoff 
Marcillat 
Comte-Bellot 
Coantic 
Bakewell 
Kim et al. 
Clark 
Iribarne et al. 
van Thinh 

46 1951 
41 1954 
48 1955 
49 1964 
50 1965 
29 1966 
51  1966 
52 1968 
53 1968 
54 1969 
55 1969 

Channel 
Pipe 
Plate 
Plate 
Channel 
Pipe 
Pipe 
Plate 
Channel 
Pipe 
Channel 

Air 
Air 
Air 
Air 
Air 
Air 
Glyc. 
Water 
Air 
Alcoh. 
Air 

Hot-wire 
Hot-wire 
Hot-wire 
Hot-wire 
Hot-wire 
Hot-wire 
Hot-film 
H2 bubble 
Hot-wire 
Pyrolysis 
Hot-wire 

3 x 104 2 
5 x 104 2 
4 x 106 5 

6 x lo4 4 
1.5 - 

5 x 104 0.5 
9 x 103 2 

3 x 104 2 
2 x 104 3 
4 x 104 2 

3 x 106 4 

employing other measurement techniques. The Reynolds numbers indicated 
in Table I correspond mostly to the maximum velocity. In two-dimensional 
channel flows they are based on the half width of the channel, in pipe flows 
on the diameter, and in boundary layer flows on the distance from the 
leading edge. 

Turbulence characteristics, experimentally determined in the studies 
listed in Table I, are enumerated in Table 11, excluding k l  which was measured 
in all of them. An examination of Table I1 is not very encouraging. As 
it concerns the second statistical moments of the other two fluctuation 
components, only two out of eleven studies have measured k 3 ,  and only 
three k Z ,  in the wall layers. Regarding correlation coefficients only three 
studies have determined r I 2  = w, and none the other two, r l 3  and r 2 3 .  
Comte-Bellot [50] noted that a few measurements have been made of the 
r I 3  coefficient, which was found negligible. In the wall layers, higher order 
moments of the streamwise component have been measured only by Marcillat 
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TABLE I1 

MEASURED TURBULENCE CHARACTERISTICS 

- - - 
Ref. u2’ u3’ ulul u I 3  uI4  u I 5  G I 1  GZ2 G33 R1, R l , x  P’ W +  

46 + 
4 7 + +  + + + +  
48 + + + +  
49 + + +  
50 + t- + 
29 + + +  
51 -1- + +  
52 + + + + + 
53 + + -I- + + 
54 + + +  
55 + 

[49] and Comte-Bellot [50], with some data being provided by Klebanoff 
[48] on u14. No data exist for these moments of the other components. 
Some measurements of the triple and quadruple correlations have been 
provided only by Laufer [47]. 

Turbulence energy balance terms have been determined in a few studies. 
Data on the statistical moments of the streamwise component derivatives 
in the x1 direction have been supplied only by Comte-Bellot [50]. It is 
interesting to note that next to k ,  the characteristic most often measured 
in these studies is the energy spectrum of the streamwise component. Only 
Clark [53]  has provided data on the spectra of the other components in the 
wall layers. The autocorrelation function of the streamwise component 
R,,(z) has received attention lately. Coantic [29] also determined the cross- 
correlation coefficients R l l ( x 3 ,  z), while Bakewell [5  I ]  made measurements 
of the R1 l(xl ,x3 ,z). 

Figure 1 gives a summary of the k ,  distributions in the wall layers deter- 
mined in the studies listed in Table I. Distributions are presented in the 
usual dimensiond form, taking the friction velocity u* as the velocity scale 
in an attempt to make them universal for various flows. As may be seen 
from Fig. 1 the nonuniversality of the distributions is striking. It is true 
that these data have been obtained in studies over a period from 1951 to 
1969, for various Reynolds numbers, and with various fluids. Nevertheless, 
all these distributions correspond to flows without pressure gradient, along 
smooth, straight walls. And even if we take into consideration only the 
flows in two-dimensional channels, like those corresponding to refs. [46, 50, 
53, 551 of Table I, discrepancies of up to 40% are found. In  Fig. 2 existing 
data on the k2  and the the k3 distributions are plotted, and in Fig. 3 and 4 
the data on the u i i  distributions and the turbulence production, respectively. 

_- 



FIG. 1. Nondimensional turbulence intensity distributions of the streamwise component 
in the wall layers. Numbers correspond to the reference list. 

FIG. 2. Nondimensional turbulence intensity distributions of the other components in 
the wall layers. 
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FIG. 3.  Shear stress distribution in the wall layers. 0, Shear stress during bursting time; 
0, during quiescent period [ 5 2 ] .  

FIG. 4. Turbulence energy production distribution in the wall layers. 0, Turbulence 
production during bursting time; 0, during quiescent period [52]. 

Interesting evidence on the wall turbulence structure has been provided 
lately by visual studies. Popovich and Humniel [2 I] ,  using the flash photolysis 
method, have obtained instantaneous velocity profiles in the viscous sublayer 
o f a  pipe flow. They have found that only i n  a layer y +  = 1.6 thick are 
the profiles always linear, but with variable slope. I n  the region from 
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y +  = 1.6 to y +  = 35 very disturbed flow conditions prevail, with the 
nonzero probability of occurrence of either linear or turbulent profiles. 

In the long range studies at Stanford, using the combined time-streak- 
marker technique, it was shown that a streaky structure dominates the wall 
layers for y +  < 40 [30]. This structure consists of an alternating array of 
high and low speed streaks, transverse to the flow, with the streak spacing 
being correlated by the friction velocity [52] .  This structure “bursts” inter- 
mittently with a characteristic frequency depending on the pressure gradient. 
I t  was shown quantitatively that essentially all the turbulence production 
in the wall layers does occur during bursting times [52] .  This is illustrated 
in Figs. 3 and 4 where the average turbulent shear stress and turbulence 
production during a bursting time are compared with the corresponding 
values during a quiescent period [52] .  

In  conclusion, we might say that at present we possess only scattered bits 
of informations on the complex structure of the wall turbulence, even in 
the simplest flows. The hot-wire technique has provided a considerable 
body of data, but only on a number of statistical moments out of an infinite 
array of moments that describe the turbulence structure. In addition, the 
data obtained in the wall layers are not reliable enough. For the reasons 
laid down in Section 111, the hot-wire signal in the vicinity of the wall and 
in high intensity turbulence is not free from various irlfluences, and the 
corrections are mostly inadequate. 

Visual techniques are not suitable for a real statistical analysis. KIine 
tv a/. [56] claim that there is an extreme loss of information arising from the 
time-averaging done by the hot-wire technique. This is true as long as only 
isolated moments are concerned. A complete statistical description, con- 
sisting of the probability distributions and the autocorrelation functions, 
determined in a statistical way, and with an adequate accuracy contains 
all the relevant information. The hot-wire technique is essentially capable of 
providing such descriptions. However, i t  is necessary beforehand to perform 
a statistical analysis of the hot-wire signal, and determine precisely all the 
extraneous influences. It is probable that this could not be done with the 
hot-wire method alone, and that the help of more elaborate techniques, 
optical or visual, would be needed. Howcver, it is felt that this is the only 
way to cope with the complexity of the turbulence problem. 

2.  Nonisothcrmal Flo n’s 

The situation being what it is for simple, isothermal flows one can hardly 
expect much from the studies of flows of higher complexity introduced by 
heat transfer at the walls. These studies are, however, necessary as a guide 
for the theoretical models. as well as for the preparation of more advanced 
studies. 
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Experimental turbulence studies in  the wall layers of nonisothermal flows 
are not numerous. Johnson [44] has done a very throughout investigation 
i n  the boundary layer of a flat plate downstream of a stepwise discontinuity 
in wall temperature. In addition to the turbulence characteristics of the 
velocity fluctuations he measured temperature fluctuation rnis values, as 
well as double and triple correlations of temperature and velocity com- 
ponents. His results are very descriptive but of inadequate precision. In  
addition, data in the vicinity of the wall are not numerous. Taniinoto and 
Hanratty [40] have reported measurements of temperature fluctuations 
well inside the region 0 < y +  < 40. Temperature spectra in  this region 
have also been measured. Bloni [43] tneasured temperature fluctuations 
down to y +  = 3 ,  as well as ~g correlations, and the temperature spectra. 
All these studies have been done in  air flows, with maximuni in-stream 
temperature differences up to 15°C. 

As shown by Bremhorst and Bullock [41], on the basis of spectral and 
cross-spectral measurements, a strong relationship exists between the tem- 
perature fluctuation and the longitudinal velocity fluctuation fields. This 
is supported by the high correlation coefficients found by Johnson [44]. 
These findings indicate that the temperature field could not be investigated 
without a thorough knowledge of the velocity field. As pointed out by 
Nicholl [4S], who has investigated some dynamic effects of the heat addition, 
correlations of the type u,o represent a fliix o f  mass, not a flux o f  heat, 
Consequently, a quantitative analysis of the temperature fluctuations, as 
measured by a wire thermometer, requires that a statistical analysis of the 
signal be made. For such an analysis statistical information on the velocity 
components is needed. 

B. VARIABLE PRESSURE GRADIENT FLOW 

In practice predictions are urgently needed for much more complex flows. 
I n  particular, actual technology demands increased heat transfer rates from 
the surface. It is generally known that an increase in the heat transfer rates 
could be achieved by the turbulization of the layers in the immediate vicinity 
of the heated wall. Successful prediction procedures in such flows have to 
rely on the knowledge of turbulence parameters. As an example of what 
could be expected from experiments in similar situations some results are 
presented of a study made by the author. 

Some experimental investigations of the adverse pressure gradient flows 
have indicated that the wall layers are turbulized under the influence of the 
pressure gradient [57, 581. We have arrived at the idea of utilizing this effect 
for the promotion of heat transfer in channel flows. Preliminary results 
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obtained in a divergent-convergent channel show a substantial increase of 
the local Stanton number in the zone of the highest adverse pressure gradient 
[591. 

FIG. 5 .  Divergentxonvergent test channel. 

The possibility of obtaining high turbulence rates in the vicinity of a 
smooth wall, easy to approach with a probe, led to the construction of the 
test channel shown schematically in Fig. 5. A succession of four divergent- 
convergent sections is obtained by profiling one of the channel walls. The 
divergence angle is 16" and the inlet-outlet flow area ratio 2.5: 1. At the exit 
of the channel a parallel wall section is provided. Two of the channel walls 
can be heated electrically, and are equipped with numerous embedded 
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FIG. 6. Local Stanton number distribution along the test channel. 
Re Profiled wall Straight wall 



WALL TURBULENCE STUDIES 307 

thermocouples. Any cross section of the last divergent-convergent section, 
and the portion of the straight wall section, could be investigated by a 
probe traversing mechanism. Other details are given elsewhere [60]. 

Measurements of the local Stanton number, obtained on the basis of the 
local wail temperature and the fluid bulk temperature nieasurements, are 
given i n  Fig. 6 for three flow Reynolds numbers. The interesting features 
are a sharp increase of the Stanton number value immediately after the 
entrance and the exit of the divergent section, and the difference i n  Stanlon 
number values corresponding to the profiled and the straight wall in the 
same cross section. 

The results of the mean velocity and temperature profile ineasurenients 
have been reported [22, 42, 60, 611. I n  Fig. 7 mean velocity profiles in the 
wall layers adjacent to the profiled wall, in four cross sections immediately 
after the entrance in  the diffuser, are presented. Distributions of the cor- 
responding longitudinal turbulence intensities are plotted in Fig. 8. The 
mean velocity profile a t  the inlet (.I- = 0) has a pronounced maximum and 
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ro2 

FIG. 8. Turbulence intensity distributions along the profiled wall at  the diffusor 
entrance. 

a steep gradient at the wall and indicates a laminarization of the wall layers 
due to the flow acceleration in the preceding convergent section. The 
maximum turbulence intensity is around 10% of the velocity at the center 
of the channel (Uo).  Only 5 mm downstream the profile changes completely, 
exhibiting an inflection point separating a wall layer from the bulk of the 
flow. At the wall, the velocity gradient is still steep. The turbulence intensity 
increases to 27 % of the Uo and a narrow zone of high turbulence production 
can be detected, while in the wall layers the turbulence intensities are much 
lower. Further downstream the velocity profiles tend to an equilibrium 
with pronounced characteristics of adverse pressure gradient flows. The 
zone of high intensity turbulence is gradually spreading, penetrating slowly 
into the wall layers. Velocity profiles have been measured between x = 0 
and x = 5.2 [22]. There is no apparent indication of the flow separation, 
although the profile at x = 2 has a characteristic appearance of a reattach- 
ment profile. Nondimensional turbulence intensity (klu,) distributions in 
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FIG. 9. Nondimensional ttirbulence intensity distributions along the profiled wall at 
the diffusor entrance. 

the corresponding cross sections are given in Fig. 9. Only qualitative con- 
clusions could be drawn from Fig. 9. 

The example presented is obviously of great complexity. The flow structure 
changes abruptly from one cross section to another separated by a few 
millimeters. Turbulence intensities are of the order of 30:; of the mean 
velocity, and incipient or steady flow separation is not excluded. However, 
such flows are encountered in  reality and we have to study them. The 
measurement techniques at our disposal are inadequate for this They have 
to be improved to be able to produce quantitative results in all real flows. 

V. Hot Wire-Cold Wire Experimental Method 

A. CHOICE OF THE METHOD 

What would be most desirable for experimental investigations in non- 
isothermal turbulent flows is a method by which velocity ond temperature 



could be measured sirizu/tanrou.v/~ and by the sum’ sensing element, having 
negligible dimensions, high sensitivity, and low inertia for both velocity 
and temperature. Only such a method would be capable of producing true 
velocity-temperature correlation measurements. 

Theoretically, such a method exists. AS suggested by Corrsin, a hot wire 
is sensitive to both velocity and temperature, so that when operated by two 
different current intensities it gives information on velocity and temperature 
fluctuations, as well as on the correlation coelfcient between them. B u t  
when operated under the best conditions for velocity measurements, the 
sensitivity to temperature is an order of magnitude lower. This is w h y  the 
method has been employed only by few investigators and without satis- 
factory results. However, i t  is felt that this method has not been fully investi- 
gated as yet and that it still is potentially promising. 

As mentioned previously, experimental investigations of the velocity- 
temperature correlations usually employ two different sensors for the teni- 
perature and the velocity measurements. As a rule, a hot wire is used as a 
velocity sensor, and either a wire resistance thermometer or a microthernio- 
couple is used as a temperature sensor. An obvious disadvantage of this 
method is the necessary space separation of the two sensors, which makes it 
unsuitable for measl;renients close to a wall under conditions of high velocity 
and temperature gradient. On the other hand a reduced space separation 
leads to mutual interference of the probes. 

Another method, based on the use of the same sensor for both velocity 
and temperature measurements, the so-called hot wire-cold wire method, 
is used less frequently. The obvious disadvantage is that the measurements 
of the velocity and of the temperature are not performed simultaneously 
so that correlation measurements are not possible. I t  is felt, however, that 
the measurement of the velocity and the temperature, i n  the same space 
element, even if not carried out simultaneously, could provide valuable 
information on the physics of turbulent shear flows near walls. 

The hot wire-cold wire method has been employed i n  our experimental 
investigations of nonisothermal turbulent shear flows and is described 
below in  some detail. Care is given to the calibration of the sensor and the 
possible sources of errors. The statistical analysis of the signal is attempted 
in Section V11. 

B. DESCRIPTION OF THE METHOD 

A 5 p i  diameter tungsten wire, approximately 1.5 inn1 long, was used as 
the sensing element. As noted previously, the velocity calibration and 
recalibration of the probe is made much easier by copperplating the ends 
of the wire. For temperature measurements by the same wire, an additional 



WALL TURBULENCE STUDIES 31 1 

gain is obtained by copperplating with respect to the necessary corrections 
for temperature readings under conditions of high temperature gradients. 
The probe, consisting of a tungsten wire with copperplated ends, spot- 
welded to stainless steel supports, is shown schematically in Fig. 10. Stainless 
steel was used for the supports because of its low thermal conductivity. 
The ends of the supports were copperplated after the welding. Much care 
was given to keeping the wire straight when heated in operation. To achieve 
this, the wires were subjected to some tension while welded to the supports. 

The general electronic arrangement is shown in Fig. 10. For temperature 
measurements the wire acts as a resistance thermometer and is connected 
by four leads to a temperature bridge via a micro-ohm switch. Four leads 
are used to eliminate the resistance of the connecting cables. The bridge 

FIG. 10. Schema of the probe and the electronic circuit. 2, Micro-ohm switch; 3, 
Mueller bridge; 4, plotter; 5, tape recorder; 6 ,  rms meter; 7, hot-wire anemometer; 
8, digital voltmeter; 9, comparator; Al ,  A2, amplifiers. 

used was a Leeds & Northrup Mueller Bridge, Type G2, precise to 0.0001 R. 
The bridge current was 2 mA. For mean value determinations a Sandborn 
plotter was used. For instantaneous temperature determinations the out-of- 
balance signal from the bridge was amplified by a factor varying from 1000 
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to 3500 in a Hewlett Packard, type 2470A, low noise dc amplifier. The 
amplified signal was registered on a magnetic tape with a speed of 152.4 
cm'sec. The tape recorder used was an AMPEX Model FR-1300, operated 
in an FM mode. With 152.4 cni'sec tape speed the frequency response is 
up to 20 kHz. For a quick determination of the rms value, a DISA RMS 
Meter was used. The noise level was rather high because of the high ampli- 
fication, amounting to approximately 3 niV, so that the signal-to-noise ratio 
based on the rnis values was rather low (from 10 to 50). 

For velocity measurements the probe was switched to a DISA Type 5501 
Constant Temperature Anemometer operated at an overheat ratio of about 
1.8. For approximate mean value determinations, the Sandborn plotter 
was used and the rms value of the fluctuations was read from the RMS Meter. 
For the determination of instantaneous velocities an appropriate dc value, 
measured by a digital voltmeter, was subtracted from the signal by the use 
of a comparator. The signal was then amplified in a dc amplifier by a factor 
varying from I to 3, and then registered on the magnetic tape operated 
with a speed of 152.4 cni 'sec. 

The registered signals of the velocity or temperature fluctuations were 
fed into a CDC-3600 digital computer for statistical analysis by replaying 
the magnetic tape with a speed of 4.76 cm'sec, via an analog-to-digital 
converting system. The system used was relatively slow so that the data 
were fed into the computer with a frequency of only 250cps which, with 
the 1 :32 reduction of the tape speed, amounts to an upper frequency l imi t  
of 8000 cps. Fifteen second long signals, sampled at 123000 sec, gave 120.000 
digital values. 

C. CALIBRATION 

New probes, prior to the calibration, were subjected to a 24 h r  aging 
process consisting of operating the wire at a 10% higher overheat ratio 
and at the highest flow velocity and temperature conditions encountered in 
the experiments. 

Resistance-temperature, as well as the zero velocity potential difference- 
temperature relationship, were determined in a thermostat using a standard 
resistance thermometer. I n  the temperatiire range from 20 to 70°C the 
relationships are essentially linear: 

(5.1) 

(5.2) 

R = Ro(l + pT),  

Eo 1 C -  D .  R, 

with having a value of approximately 0.004 1 "C. 
The velocity calibration was performed by two methods. For higher 
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velocities, the calibration was performed in a modified DISA Calibration 
Unit, with modifications consisting of an air heater a t  the entrance to the 
unit. By this means, the flow temperature could be raised up to 70°C. A 
Fortier Micromanometer enabled reading pressure differences of 5 x lo-' 
bars so that the precision of the calibration is adequate for velocities greater 
than 1 mjsec. In the statistical analysis of wall turbulence, instantaneous 
velocities lower than 1 mjsec are encountered. Moreover, the nonlinearity 
of the signal is highest in this velocity range so that a precise calibration 
for velocities lower than 1 mjsec is essential. For velocities from 0.1 to 2 
mjsec the calibration was performed by placing probes in the centers of 
calibrated glass tubes in which stable laminar flow was maintained. The 
flow rate was determined by the use of miniature Lava1 nozzles. 

The calibration results are well represented by a relation of the type: 

E 2  - E O 2  = K * u" (5.3) 

K and n for different velocity ranges being given in Table 111 for the flow 
temperature T, = 25.8"C. Very high nonlinearity of the signal at low velo- 
cities is evident. The potential difference E,  at a temperature T is adequately 
related to the potential difference E, at a standard temperature T, by 

E : = E : (  R w  - R, ), 
R w  - R, 

(5.4) 

the subscripts w, T, and a being pertinent to the temperature of the wire, 
and the temperatures T and Ta, respectively. 

Probes slowly change their characteristics in use. However, as long as 
the wires remained straight it was found that the relations Eqs. (5.1) and 

TABLE 111 

HOT-WIRE CALIBRATION 
~~ 

Velocity range 
(misec) K n 

0-0.4 
0.44.7 
0.7-1 .O 
1.0-1.4 
1.4-2.0 
2.M.O 
4.0-7.0 

7.0-13.0 

27.040.0 
> 40.0 

13.0-27.0 

23.79 
11.31 
10.02 
9.15 
9.08 
9.61 

10.07 
10.71 
11.29 
11.93 
12.12 

1.60 
1.02 
0.88 
0.125 
0.645 
0.555 
0.515 
0.49 
0.47 
0.45 
0.435 
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(5.2) are still valid with the same values of the parameters with the exception 
of R o ,  which is easily determined in each experiment. A tedious and time- 
consuming recalibration of the probes is therefore eliminated. 

D. WALL EFFECT 

1. Velocity 

As already mentioned, the rate of cooling of the hot wire and its supports 
is modified in the vicinity of the wall by the presence of the solid surface. 
This “wall effect” presents serious problems in wall turbulence studies in 
which it is important to approach the wall as closely as possible. 

The problem has not been solved theoretically; thus, an empirical approach 
must be employed. For the determination of mean velocities we have used 
the method introduced by Wills [28], with the improvements proposed by 
Coantic [29]. For each probe to be used in the experiments, modifications 
to  the wire response as a function of the distance from a solid surface under 
zero velocity conditions have been established. This was done by allowing 
the probe to approach a wall made of the same material used in  the experi- 
ments, the exact distance of the wire from the wall being determined by 
precise optical means. A typical relationship 

E,Z - Eo2 = f ( Y ) ,  (5  * 5 )  

where E,, is the apparent, and Eo the corrected wire potential difference for 
zero velocity, and y is the distance from the wall, is shown as curve A in 
Fig. 11. To obtain the corrected wire potential difference for nonzero velo- 
city (&), use was made of the measurements of Wills [28], from which the 
quantity 

was taken, where ,I is the air thermal conductivity, I the active length of 
the wire, R the operating resistance, T, the operating temperature of the 
wire, and T, the air temperature. Finally, the relationship 

AE2 = ( E o 2  - E,2)/nAlR(Tw - T,) (5.6) 

EW2 - E: = E;  - Eo2 - nl,IR(T, - T,) AE2 (5.7) 

is obtained and presented as curve B in Fig. 1 1 .  
The relation Eq. (5.54, which is easily reproducible for a given probe, is 

used as a precise means of determination of the actual distance of the wire 
from the wall in the experimental channel. After the wire had approached 
the wall as near as possible, the air flow was stopped and the position of 
the wire determined, using the relation Eq. (5 .5) .  

As also found by Wills [28], the corrected velocity LI(E,), obtained on the 
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FIG. 11. Wall effect corrections. A, zero velocity; B, nonzero velocity. 0, Measured 
points. 

basis of the corrected wire potential difference Ea,  is a good match for the 
real velocity in the case of laminar flow but gives an overcorrected velocity 
in  the case of turbulent flow. Wills, as well as the other investigators who 
employed his method, obtained fair results by introducing a second cor- 
rection so that the velocity in turbulent flow is obtained from 

where C,, = 0.5, an empirical correction factor found by Wills. We have 
also obtained fair results by using the same procedure, as seen from Fig. 12, 
in  which the measured velocity distribution close to the wall is presented. 

Apart from the wholly empirical character of the procedure (there is still 
much that is empirical in the hot-wire method), one cannot be satisfied with 
it for two reasons. First, as seen from Fig. 1 1 ,  the corrections for zero velo- 
city are (obtained by using curve A, and for a velocity, however sinall but 
nonzero, by using curve B. There is an obvious discontinuity in the procedure. 
This is also illustrated by Fig. I ? ,  in which unsatisfactory corrections are 
obtained for the distances closest to the wall. Second, there is no explanation 
for the need to use the empirical correction factor C, in the case of turbulent 
flow, and why it has to be equal 0.5. 
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FIG. 12. Velocity distribution in the wall vicinity, cross section D, Re = 36,000. 
0, Uncorrected values; 0, laminar corrections applied (C, = 1); 0, turbulent corrections 

applied (C,, = 0.5). 

2 .  Temperature 

The probe prongs are inclined at an angle a to the wall so that in a non- 
isothermal flow there exists a temperature field in the probe prongs which 
leads to the heat conduction from the wire to the prongs. In the high tem- 
perature gradients found in the vicinity of the wall this conduction can not 
be neglected, so that the apparent mean wire temperature T, is lower than 
the local flow temperature T,. 

The correction could be determined by solving the differential equations 
for heat conduction in the wire, in  the copperplated ends of the wire, and 
in the prongs. These differential equations are of the type 

where xi is the running coordinate, Ti the local temperature, T, the flow 
temperature, and 
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h i  being the corresponding convection heat transfer coefficient, ILi the 
thermal conductivity of the material in question, and di the diameter. For 
the wire and copperplated ends Tf = T,, but Tf varies along the prongs. 
We have used an approximation of the form 

T, - To = (T, - To) * e-n 'x3 ,  

where xs is the running coordinate along the prongs, To the air temperature 
at the cold end of the prongs, Tw the temperature of the wall, and 

a = (4, * sin @)/AfW(Tw - To), 

qw being the wall heat flux, and A,, the thermal conductivity of the air for 
T W  . 

The following relation for the temperature correction is obtained by 
solving the differential equations (5.9) with appropriate boundary conditions 
and assuming that the heat fluxes at the junctions, wire-copperplated ends 
and copperplated ends-prongs, must be equal. 

and Fi are the corresponding cross section areas, with i = 1 for the wire, 
i = 2 for the copperplated ends, and i = 3 for the prongs. 

By analyzing the above expression i t  can be shown that the increase in 
the lenglh of copperplated ends I, diminishes the correction (T,  - TK). 

In order to use the above expression to determine the correction (T,  - TR) ,  
the wall temperature and the wall heat flux must be known. These can bc 
measured independently but Eq. (5.10) could be used also when they are 
only known approximately. I n  this case, a certain number of iterations are 
necessary. Certain assumptions are needed for the heat transfer coeflicient 
/i3 which is variable along the prongs. We have evaluated h3 on the basis 
of the flow velocity at x3 = / 3 ' 3 .  The resulting corrections are illustrated 
in Fig. 13, where the temperature profile in the vicinity of a smooth wall 
is plotted. It is seen that the values of the necessary corrections are substantial. 
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FIG. 13. Temperature distribution in the wall vicinity. 0, Uncorrected; 0, corrected 
temperatures. 

VI. Experimental Results 

A. EXPERIMENTAL PROCEDURE 

The experimental results presented in this section were obtained in the 
divergent-convergent channel installation described in Section IV. Measure- 
ments were made only in the wall layers adjacent to the straight plate of 
the channel where the flow is less disturbed and thus more suitable for 
statistical analysis. 

Four cross sections of the channel, indicated in Fig. 14, were chosen for 
detailed investigation. Cross section A, located at the end of the divergent 
section, is characterized by the most severe adverse longitudinal pressure 
gradient occurring in the channel. On the other hand, the value of the 
favorable pressure gradient is highest in cross section C. Cross section B is 
situated midway in the convergent section where the degree of turbulence 
created in the divergent section is still high. Cross section D is located in 
the exit parallel-wall section of the channel where the pressure gradient is 
close to zero. 
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FIG. 14. Distributions of the friction velocity, form parameters, and local Stanton 
number along the channel. 0, u * ;  0, H ;  0, H,;  A, St. 

The mass flow rate of the air in the channel was kept approximately 
constant in  all experiments, corresponding to a Reynolds number, based on 
the hydraulic diameter, of about Re = 90,000. Only in cross section D 
were the investigations also made with Re = 36,000. 

With the traversing mechanism fixed in a given cross section, velocity 
traverses were first made in isothermal flow without the wall heating. 
Subsequently, velocity and temperature traverses were made with the walls 
heated electrically. The wall heat flux was kept approximately constant in  
all the experiments at about qw = 2000 Wjm’. With this heating rate and 
Re = 90,000, the maximum fluid temperature difference in a cross section 
was 30°C:. 

In all cross sections, at different distances from the wall, velocity and 
temperature signals, 30 sec long, were registered on the analog tape. Those 
signals were later analyzed statistically on the CDC-3600 digital computer. 

B. MEAN FLOW RESULTS 

1. Isothermal Flow 

Local mean velocities at different distances from the wall were measured 
by the hot-wire method described in Section V on the basis of the mean 
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potential diflerence E. In  the vicinity of the wall, ‘‘wall effect” corrections 
were applied using the modified Wills method. In all four cross sections at 
least three mean velocity values were determined inside the viscous sublayer 
( y +  < 6). From the slopes of the mean velocity profiles i n  the viscous 
sublayer, which have been found linear (Fig. 12), wall shear stresses z, and 
corresponding friction velocities u* have been determined. The distribution 
of the friction velocity 11, along the part of the channel under investigation 
is shown in Fig. 14 along with the distribution of the form parameter H 
calculated from the velocity profiles. 

FIG. 15. Nondimensional mean velocity distributions in different cross sections. 
Isothermal flow, Re = 90,000. Cross section: A, 0 ; B, 0 ; C ,  0 ; D, 0. 

Mean velocity profiles in the usual nondimensional representation for all 
four cross sections are shown in Fig. 15. For the profile in  cross section D, 
where the flow approaches a developed channel flow, the logarithmic law 

U +  = A logy+ + B (6.1) 
is confirmed with A = 6.1 and B = 6.5, i n  fair agreement with the results 
of Comte-Bellot [50]. However, in all three other cross sections the logarith- 
mic portions of the profiles are hard to detect. The profile in cross section A ,  
at the end of the divergent section, lies substantially lower and the profile 
in  cross section C, at the end of the convergent section, substantially higher 
than the profile in  D. The profile at cross section B approaches the profile 
at C in the wall layers and the profile at A away from the wall. For y +  < 14 
profiles B and C in the convergent section coincide and are higher than the 
profiles at A and D, which indicates an approach to the laminarization of 
the wall layers. 

The distributions of the turbulence intensity k ,  made nondimensional 
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FIG. 16. Nondimensional turbulence intensity profiles. Isothermal flow, Re = 60,000. 
Cross section: A, 0; B, 0; C, 0; D, 0. 

with the friction velocity u* ,  are plotted against y +  in Fig. 16. Turbulence 
intensities were obtained in the usual way on the basis of the rms values of 
the hot-wire signals, determined by rms meter. As the signal was not electro- 
nically linearized, for the reasons laid down in Section IV, a sort of lineari- 
zation was performed in the computer by calculating k from 

k = 0.5[U(E + e)  - U ( E  - e)], 

e being the rms value of the signal having a mean potential difference E,  
with the velocity U being determined directly from Eq. (5.3). Corrections to 
the wall effect have been applied. N o  correction for the high intensity of 
turbulence has been applied at this stage. 

Turbulence intensity results obtained this way are presented in this 
section because although being not characteristic of the mean flow they are 
neither true characteristics of the turbulence in the statistical sense. With 
the turbulence intensity being equal to 40% of the local velocity, as it is at 
y +  = 5 in cross section A, k could not represent longitudinal velocity 
fluctuations only. On the other hand, analog averaging at high intensity 
turbulence of a highly nonlinear signal is very doubtful. The results pre- 
sented in Fig. 16 cannot be used for a quantitative analysis. Qualitatively, 
however, they do indicate a certain damping of the turbulence in the wall 
layers at cross section A. Once more they show nonuniversality of the 
turbulence intensity profiles in the wall layers at  different cross sections. 
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2. Nonisothermal Flow 

In nonisothermal flow at a given distance from the wall both velocity 
and temperature readings were taken. Velocity and temperature values 
were determined from these readings in the computer taking into account 
the mutual influence of these quantities upon each other. “Wall-effect” 
corrections described in Section V have been applied to both quantities in  
the vicinity of the wall (Eqs. 5.7, 5.8, and 5.10). 

FIG. 17. Velocity and temperature difference profiles in the wall layers. Cross section 
D, Re = 36,000. A, Temperature difference B I B , ;  (1, velocity, U/Uo-isothermal flow; 
0, nonisothermal flow. 

Velocity distributions in cross section D, corresponding to a flow with 
Re = 36,000, with and without wall heating, are presented i n  Fig. 17 along 
with the temperature difference distribution. Velocity and temperature 
values have been made nondimensional by the velocity (Uo)  and the tem- 
perature difference (T, - To) at the center of the channel (y = S) where 
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both profiles are fairly flat. As already noted by other investigators [45], 
velocity ratios UlU, corresponding to nonisothermal flow are lower than 
those for isothermal flow in the wall region, and become higher away from 
the wall at approximately y/6 = 0.15. The friction velocity was calculated 
on the basis of the velocity gradient at the wall and the viscosity at the wall 
temperature (pw), with y+ = p,, . yu,//i,. Nondimensional velocity profiles 
in the usual semilogarithmic presentation are shown in Fig. 18. It is seen 
that the profiles for isothermal and nonisothermal flow fail to coincide, 
having, however, the same slope in the logarithmic region. 

FIG. 18. Nondimensional velocity and turbulence intensity profiles in isothermal and 
36,000. 0, Velocity-isothermal flow; 0, non- nonisothel-ma1 flow. Cross section D, Re 

isothermal flow. A, Turbulence intensity-isothermal flow; A, nonisothermal flow. 

In Fig. 18, the nondimensional turbulence intensity, k/u,, profiles for 
isothermal and nonisothermal flow are also shown. The profiles are con- 
siderably different, klu,  values corresponding to the nonisothermal flow 
being substantially higher, especially in  the buffer region. We shall return 
to this later. Comparing Fig. 18 with Fig. 16 it is seen that the k /u ,  values 
corresponding to the flow with Re = 36,000 are higher than those corres- 
ponding to Re = 90,000. A similar effect was reported by Coantic [29], 
indicating again the nonuniversality of the turbulence intensity profiles in 
the wall regions. 
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Form parameters H ,  given by 

for nonisothermal flow and the cross sections under investigation, plotted 
in Fig. 14, are in a good agreement with the form parameters H for isothermal 
flow. 

FIG. 19. Nondimensional temperature profiles in different cross sections. Re = 90,000. 

Nondimensional temperature differences 

for the four cross sections are plotted in Fig. 19 against y + .  The wall heat 
flux qw determined from the temperature gradients at the wall was within 
4 %  agreement with the flux determined from the dissipated heat. In cross 
section D, a logarithmic region corresponding to 

0' = A,logy+ + B,  (6.3) 
could be detected, with A ,  = 5.3 and B ,  = 1.1. A comparison with the 
velocity profiles gives a ratio A , / A  = 0.87, which is in fair agreement with 
the results of other authors [43]. The B, value found is low, indicating a 
developing temperature profile [43]. Profiles corresponding to other cross 
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sections differ from the profile at D, as in  the case of velocity profiles. Again, 
the profile at C indicates a certain laniinarization, and the profile at A a 
turbulization of the wall layers. Local Stanton number values calculated 
from the temperature and velocity profiles are presented in Fig. 14. I n  agree- 
ment with the temperature profiles, the local Stanton number at cross section 
A is 39% higher than the Stanton number at C. 

FIG. 20. Nondirnensional temperature fluctuation rms value profiles in different cross 
sections. Re = 90,000. Symbols correspond to Fig. 19. 

The rms values of the temperature fluctuations k,., made nondimensional 
in  the same way as the temperature differences, are presented in Fig. 20 for 
the four cross sections. Comparing temperature fluctuations with the velocity 
fluctuations at the cross section D one notes that the maximum is displayed 
away from the wall and that the absolute value of the nondimensional 
temperature fluctuations is considerably lower than the corresponding value 
of the velocity fluctuations. An interesting feature can be seen from Fig. 20. 
The temperature fluctuations are substantially higher in  cross section C 
than those in  cross section A, in contrast to the velocity fluctuations (Fig. 16). 

C. EXPERIMENTALLY DETERMINED STATISTICAL CHARACTERISTICS 

The first task was to  determine the probability density distributions of 
the instantaneous velocities and temperatures at various distances from the 
wall. Concerning the velocities, one must be aware of the fact that the hot 
wire is sensitive to the intensity of the velocity vector, so that the probability 
density distributions measured by a hot-wire sensor correspond to this 
intensity and not to a single component of the velocity fluctuations. In the 



case of nonisothermal flows an additional complication follows froni the 
fact that the hot wire is also sensitive to the flow temperature, so that the 
influence of the temperature fluctuations has to be determined. 

In all the cross sections, at various distances from the wall, 30 sec long 
hot-wire signals in  isothermal flow have been registered on the analog tape 
running at maximum speed. Later the tape was replayed at a speed reduction 
of 1:32 and sampled with an analog-to-digital converter at a rate of 250 
samples/sec so that the real-time sampling was 8000 samples 'sec. The real- 
time sampling interval was 15 sec, giving 120,000 digital values. The digital 
data were processed by a CDC-3600 computer and registered on a digital 
tape in six records of 20,000 data each. In the process of registering the analog 
signal an appropriate subtraction ofthe dc value and a suitable amplification 
(not exceeding 3: 1) was applied so that the voltage fluctuations were regis- 
tered in the limits between 0 and 2.5 V. 

For the amplitude analysis the 2.5 V range was divided into 1000 sec- 
tions so that the sensitivity of digitalization was s = 2.5 'y mV, p being the 

FIG. 21. Typical probability distributions of the signal (left) and of the velocity (right) 
in the vicinity of the wall. 
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amplification factor. A typical probability distribution of a hot-wire signal 
inside the viscous sublayer is shown in Fig. 21. Only one out of 25 points is 
shown. I n  obtaining the probability distribution of the velocity, care must be 
taken of the nonlinearity of the signal. The linearization was done in  the 
computer. For each voltage fluctuation value a corresponding velocity value 
was obtained using expression Eq. (5.3). This is not enough since the 
sensitivity of the wire (AU!AE)  changes in the range of the velocity fluctua- 
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U,, = Unji,, + N .  Ail ( N  = 0,  I ,  2, ...) the frequency of occurrence is 
obtained by an  interpolation of the probability distribution of the electric 
signal. Velocity probability density distributions corresponding to the 
probability distribution of the signal given on the left side of Fig. 21, calcu- 
lated by this procedure, are shown on the right side of Fig. 2 I .  Wall effect 
cori.xtions were applied to each velocity value in the vicinity of the wall 
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C, = 0.5. C, = I correspond to the laminar and C, = 0.5 to the turbulent 
flow corrections proposed by Wills. 

From the probability distributions determined, the statistical mean values 
as well as the central moments of order 2 to 6 were calculated. The adequacy 
of the chosen sampling time z = 15 sec was tested on a number of the signals. 
In Fig. 22, the variations in the mean velocity 17, dispersion k ,  and flatness 
factor F, averaged over successive time intervals z I  = 1.25 sec, are plotted 
for a signal inside the viscous sublayer. Also shown are the values averaged 
over time intervals of I I  . 2,  , for n = 1 to n = 12. It is seen that the chosen 
sampling time T = 122, seems to be just about adequate as it concerns 
dispersions. 

The distribution of the statistically determined mean velocities in the 
vicinity of the wall for cross section D, with Re = 36,000, is compared in 
Fig. 23 with the distribution of the mean velocities determined from the 

FIG. 23. Distributions of the statistically determined mean velocity, 0, and the mean 
velocity from the analog signal, a. -$+, Velocity determined with laminar corrections 
(C,  = 1). 
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analog nonlinearized signal. The difference between the two values is sub- 
stantial in the region y < 0.33 mm where the wall effect corrections are 
applied. Also shown is the distribution of the statistically determined mean 
velocities calculated with the laminar wall effect correction factor C, = 1. 
The latter does not have a linear trend in the viscous sublayer. However, 
it is felt that the question of the wall effect is still open. The difference in 
dispersion determined from the probability distributions and from the 
analog signals are of the same order in absolute values. 

Distributions of the skewness factor 

S = $ j: ( u  - C)*p(u)  d u ,  

the flatness factor 

F = j$ j : (u  - ii)“p(u) du,  

the superskewness factor 

and the superflatness factor 

SF = - ( u  - @ p ( u )  du, k‘. j: 
in the wall layers of the cross section D at Re = 36,000 are presented in 
Fig. 24. Wall effect corrections with C, = 1 give somewhat higher values of 
all the above factors, as indicated in the case of the skewness factor in  Fig. 
24. All the ‘factors have values substantially different from the values cor- 
responding to the Gaussian distribution ( S  = SS = 0, F = 3, SF = IS) .  
Inside the viscous sublayer these values became very high. I t  is interesting 
to note that both skewness factors became negative at approximatdj: 
y +  = 15 where both flatness factors are minimal. 

The variations of the skewness and the flatness factors, plotted against 
y +  for the four cross sections under investigation, with Re = 90,000, are 
shown in Figs. 25 and 26, respectively. Solid lines represent the measurements 
of Marcillat [49]. In the region outside the viscous sublayer, the highest 
S and F values are those corresponding to the cross section A, with those 
corresponding to the cross sections C and D having the lowest values. 
Inside the viscous sublayer a steep rise in both S and F values is observed 
for all four cross sections. 

The temperature probability distributions were determined in a similar 
way. However, in the case of temperature, the signal is linear so that the 
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FIG. 24. Distributions of the higher order statistical moments. Cross section D, Re = 

36,000. 0, skewness factor; 0, flatness factor; 0, superskewness factor; m, superflatness 
factor;+, skewness factor for laminar corrections (C,  = I ) .  

probability distribution of the signal corresponds to the temperature proba- 
bility distribution. Wall effect corrections were applied to the mean value 
only. 

The sensitivity of digitalization was 102/p,  degrees, while the amplification 
factor p T  was from 2000 to 3500. The probability distribution of the noise 
signal was also determined and its statistical moments calculated. Central 
moments of the temperature distributions were corrected by corresponding 
moments of the noise signal. For instance, in the case of dispersion, 

2 
kr , corr  = k+.mcas - k&i\c .  

The corrected rms values were never less than 97% of the measured values. 
For other moments corrections were negligible. 

The variations in  the skewness, flatness, superskewness, and superflatness 
factors in the vicinity of the wall for cross section D is presented i n  Fig. 27 
for the flow with Re = 90,000. The temperature difference ( 0  = T,, - T )  
probability density distribution for y +  = 6.6 in the same cross section 
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FIG. 25. Distributions of the skewness factor in different cross sections. Re = 90,000. 
Cross section: A, .; B, 0; C, 0 ;  D. 0. 

FIG. 26. Distributions of the flatness factor in different cross sections. Re = 90,000. 
Symbols correspond to Fig. 25. 
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FIG. 27. Distributions of higher order statistical moments for temperature signals. 
Cross section D, Re = 90,000. 0, skewness factor; 0, flatness factor; A, superskewness 
factor; A ,  superflatness factor. 

is given in Fig. 28, together with the corresponding velocity probability 
density distribution. There is a similarity between the two distributions, 
with the temperature distribution being closer to a Gaussian distribution. 
For all four cross sections under investigation skewness and flatness factor 
distributions are plotted against y +  in Figs. 29 and 30. Comparison with 
Figs. 25 and 26 reveals the same general trend for the skewness and the flat- 
ness factor variations and for the velocities and the temperatures, thus 
indicating similarities of the probability distributions. Note that the skewness 
factors for the temperatures are negative as a consequence of the probability 
distributions being skewed in the sense of lower temperatures, while the 
corresponding velocity distributions are skewed i n  the sense of higher 
velocities. On the other hand, the variation of all the factors corresponding 
to temperatures is much less than in the case of velocities, especially inside 
the viscous sublayer. 

Velocity and temperature rms values, determined from the probability 
distributions in cross section D in  nonisothermal flow with Re = 90,000, 
are plotted in  Fig. 31. On the same figure statistically determined velocity 
rnis values corresponding to isothermal flow, as well as the rms values of 
the analog signal for the isothermal and the nonisothermal flows, are plotted. 
As already noted discrepancies between the statistically determined rms 
values and those determined from the nonlinearized analog signal are 
substantial, being, however, less in nonisothermal flow. Discrepancies 
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FIG. 28. Probability density distributions of t l ic velocity,x : I I ,  0, and the temperature 
difference, x = 8, 0. Cross section D, lie - 90,000, y +  = 6.6. 

FIG. 29. Temperature skewness factor distributions i n  different cross sections. Re = 

90,000. Cross section: A, .; B, n; C, 0 ;  D, 0. 
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FIG. 30. Temperature flatness factor distributions in diKerent cross sections. Re - 
90,000. Symbols correspond to Fig. 29, 

FIG. 31. Velocity and temperature rnis value distributions. Cross section D, Re = 

90,000. ( ', teniperattire; 0, velocity-isotlicrmal flow; -,: -, nonisothcrmal flow. Open 
symbol values determined from analog signal. Solid symbols, statistically determined 
values. 

between the corresponding values for isothermal and nonisothermal flow 
are much less for the statistically determined rms values. Root-mean-square 
values in this particular flow were found to be approximately 10% higher 
for nonisothermal flow. Soniewhat smaller discrepancies were found in the 
case of higher order moments. On the basis of the known sensitivity of the 
hot wire to changes in fluid temperature, Eq.  (5.4). and the experinientally 
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determined temperature probability distributions, probability distributions 
of the temperature-provoked velocity signals were determined. Root-mean- 
square values of these temperature-noise signals, k,,, were found to be at 
most equal to 100,: of the velocity rms values. Taking into account that the 
correlation coefficient r, , [  is not zero the true velocity dispersions k 2  could 
be obtained from 

k,2 = ii' + k,Z, + 2r,,k . kul, (6.8) 

where kS2 is the velocity dispersion in nonisothernial flow. 

VII. Statistical Analysis 

A. SCOPE OF THE ANALYSIS 

From the experimental results presented in Section VI one can get an 
impression of the importance of the true statistical analysis for serious wall 
turbulence studies. The intensity of the velocity fluctuations in the wall 
regions and the fact that the nonlinearity of the hot-wire signal is highest 
in this region of low velocities rule out the use of the electronic linearizers 
for precise measurements near walls. Digital analysis of the signal, with 
the linearization performed on the computer, and statistical averaging are 
the only alternatives. Statistical analysis is almost indispensable in  non- 
isothermal flows. 

Amplitude statistical analysis is of great importance in the understanding 
of the processes in the wall layers. Higher order moments determined from 
the probability distributions presented in Section VI are substantially dif- 
ferent from the corresponding Gaussian values. It follows that the dispersions, 
or even the kinetic energy of turbulence, could not by themselves determine 
the process. 

Probability distribution analysis of wall layers, apart from some rare 
measurements of the higher order statistical moments, was however not 
attempted. This is because the data in the form we have presented them in 
Section V1 have very limited and only qualitative value. A priori, without 
further analysis, we could not even draw from them an answer to a simple 
question: are the probability distributions of the velocity components 
Gaussian or not'? 

That the probability density of the velocity measured by a hot wire is not 
Gaussian is evident from the data. But i t  could not be Gaiissian even if the 
components had Gaussian distributions because what we are measuring is 
the probability distribution of the module of the velocity vector which 
could not be Gaussian. The wire is equally sensitive to both velocity 
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coniponents normal to the wire and its signal contains information on both 
of them. 

Before a quantitative use could be made out of the probability distribution 
measurements in the wall layers the respective influence of both components 
has to be determined. An attempt to do  this is made i n  the following section. 

B. STATISTICAL ANALYSIS OF THE HOT-WIRE SIGNAL 

As already stated the instantaneous signal from a hot wire contains 
information on the intensity of the velocity vector. Because the heat transfer 
from the wire is much less effective for the velocity Component parallel to 
the wire than for the component normal to the wire, it could be assumed 
that the signal is related to the normal component of the instantaneous 
velocity vector (uN,  Fig. 32) .  It is evident then that a wire placed normal 
to the main stream and parallel to a wall could not possibly measure a 
single component of the fluctuation (id,), being necessarily influenced by the 
component normal to the wall (id2).  

FIG. 32. Instantaneous velocity vector. 

In measurements of high intensity turbulence it is the usual practice to 
take care of the influence of the u2 component by introducing corrections 
to u L  readings based on a binomial expansion of zi,.,. The procedure is wrong 
in principle because of the statistical nature of velocity fluctuations. The 
signal is influenced not only by the rms value of u2 but by the nature of 
its statistical distribution, and by the correlation coefficient between u ,  and 
112 . 

The probability density distributions of the velocity components in wall 
turbulence are not known. As already noted, measured values of higher 
order statistical moments in wall layers could only represent statistical 
characteristics of the signals from the wire, not of the components. That 
they indicate non-Gaussian distributions is quite normal since probability 
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density distributions of the vector quantities are always non-Gaussian, even 
when the components have a Gaussian distribution, as in  the case of the 
well known Maxwell-Boltzniann distribution. 

A new approach was introduced by the author [62, 631, based on certain 
assumptions regarding probability distributions of the components normal 
to the wire. Quite naturally, the starting assumption was that the components 
normal to the wire have Gaussian distributions 

but that there exists a nonzero correlation coefficient (r) between them, 
and that their rms values (a,) are not equal. In that case a two-dimensional 
joint probability density distribution is given by 

(7.2) 
If we assume that a signal from a hot wire is perfectly linearized, then, 

in the absence of thermal inertia, to each value of the signal corresponds a 
value of the velocity vector intensity uN. The probability density distribution 
of the signal then corresponds directly to the probability density distribution 
of the velocity vector intensity. The latter is obtained by integration of the 
joint probability density distribution p ( u ,  , U J  over the perimeter of the 
wire : 

(7.3) 
where 

p = zr,ja and a = dol’ + aZ2. 

By a transformation of coordinates 

u 1  = a[p cos 4 - 11 cos a]  = (17, - ul)  cos cf + u2 sin 2, 

z)2 = a[p sin d) + p sin E ]  = -(Ul - u I )  sin a + u2 cos a,  

with 
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the following relation is obtained: 

P ( P )  = (P+> exp { - E 2 b 2  + P2(1 - v cos 2cOll 

x J r e x p  ic’[ p2q cos 2 4  + 2pp[(1- cos 4 cos c1 

- (1 + q )  sin 4 sin a] } d4. (7.4) 

The relation Eq. (7.4) represents the probability density distribution of 
the instantaneous velocity signal in integral form. It depends on three free 
parameters of the local turbulence: 

1 
p = UJa, Q = u,/a,, r = u1u2/u1u2, 

and is always non-Gaussian except in the case when r = 0 and a, = a2. 
It  is very important to note that the mean value of the signal 

is not equal to p ,  and consequently the mean value of the velocity normal 
to the wire ii, is not equal to the mean velocity I / ,  , and that the rins value 
of the signal 

k = ~ [ ( p  - ,~5)~ ]~” ,  

which is in fact measured by the hot wire, is not equal either to a, or to 
(i = Ja12 + a2’. 

However, if the basic assumption about the statistical distributions of 
the components is correct, then from a measured probability density of the 
signal, by comparing it with the theoretical distribution Eq.  (7.4), one can 
determine all of the local paramaters of turbulence: 11, R, and r ,  and from 

u, = ii, ’ p / p ,  

6, = kR,’aJI + R2, 

0 2  = k,’aJI + R‘, 

calculate the true mean velocity and the rrns values of the components. 
This would be of great importance since all the local characteristics of 
turbulence are obtained from ;I signal of a single hot wire which could 
easily be located in the actual vicinity of the wall. 

The probability density distribution has been calculated for various 
values of the parameters ,u, R, and r by numcrical integration 011 a digital 
computer. Probability density distributions for some combination of the 
free parameters are shown in Fig. 33, and the variation of the corresponding 
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FIG. 33. Theoretical probability distributions of the velocity vector module. 

skewness ( S )  and flatness ( F )  factors in the function of the free parameters 
is shown in Figs. 34 and 35. I t  is seen that both factors could have very 
high values for high turbulence intensity. 

Some characteristics of the distribution Eq. (7.4) have to be mentioned: 
-The distribution is still insensitive to the direction of the main flow, 

i.e., the direction of the mean velocity U ,  has to be known in advance. 
-For higher ,u values, i.e., lower turbulence intensities, the distribution 

is very close to a Gaussian distribution, so that the turbulence characteristics 
determination method based on the comparison of the theoretical and the 
experimental distributions is not sensitive enough in conditions of low 
turbulence intensity. 

-Skewness factors corresponding to Eq. (7.4) never became negative and 
flatness factor values are never below F = 2.7. 
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FIG. 34. Skewness factors determined from the theoretical distribution for different 
combinations of the free parameters. 

FIG. 35. Theoretical flatness factors for different combinations of the free parameters. 
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The above analysis could be extended to the three-dimensional case when 
the joint probability density is given by 

(7.5) 

and depends on six parameters: (Ul/a), (a,/a,), ( 0 2 / ~ 3 ) ,  and the correlation 
coefficients r I z ,  rI3 ,  and r Z 3 .  

However, the component parallel to the wire has not the same effective- 
ness to heat transfer from the wire as the normal component. If we suppose 
that this is the component u3 then the signal is influenced by an effective 
value u~~ = [ . u3. The factor < is not well known. It has a value from 
0.1 to 0.2, which has to be determined more accurately before a three- 
dimensional analysis is attempted. 

We have examined the influence of the neglect of the component parallel 
to the wire on the two-dimensional analysis. The velocity vector could be 
divided into 

uN = u sin $, 

u 3  = u c o s * ,  

$ being the angle between the parallel and the normal components. Then, 
taking into account the effectiveness of u 3 ,  

where 
P = ( l / o ) [ c a N ~ N ) ~  + ( ~ L c ~ ) ~ I ~ / ~ ,  

0 = [a,’ + ( 5  . a3)2]1/2 and 

For the already known two-dimensional probability density distribution, 
Eq. (7.4), the three-dimensional distribution of the velocity vector intensity 
p ( p )  could be obtained by a second integration: 

cN = (oIz + a22)1/2. 
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if we assume that the uj component is not correlated with the normal com- 
ponents, i.e., if r I 3  = r Z 3  = 0 or is negligible, which is close to the real 
situation according to some rare measurements. Calculations have been 
performed for various values of 5 from 0.1 to 0.2, and the results show that 
neglect of the ~1~ component in the analysis is justified. 

As it concerns the other basic assumption, i.e., that the components have 
a Gaussian distribution, the justification has to be provided by experiment. 
This assumption is discussed in  the next section on the basis of the measure- 
ments presented in Section VI. 

c. RESULTS OF ANALYSIS 

It is not too plausible to suppose that the probability distributions of the 
velocity components in shear flow should be Gaussian. The existing evidence 
suggests that wall turbulence is a nonlinear random process. Theoretically 
Gaussian distributions would result in  all third-order moments and their 
derivatives 2 and(au,3,idxi) being zero, which is not in accordance with 
the existing evidence, at least in most regions of the boundary layer. Direct 
experimental evidence on the nature of the probability distributions of the 
fluctuation Components could not be produced by the hot-wire method. 
The laser-Doppler method is well suited for measurements of the probability 
distributions of single components. Initial measurements with this method 
in Imperial College gave nonnoriiial distributions of single components 
although not in the vicinity of the wall [64]. 

The results of our preliminary measurements have indicated that the 
distributions could be Gaussian in the layers close to the wall [61]. However, 
these results have been obtained on a small digital computer and with a 
poor analog-to-digital conversion system having a low upper frequency 
limit. These results have also shown that the skewness factor becomes 
negative away from the wall so that in  this region the assumption on the 
normality of the distributions could not hold, as also noted by Durst and 
Whitelaw [64]. 

The results presented in  Section VI rule out the assumption that the 
velocity components could possibly have Gaussian distributions even in the 
wall regions. I n  the layers closest to the wall, higher order moments are 
much higher than those permissible by the theoretical distribution Eq. (7.4) 
for any combination of the free parameters. On the other hand in the 
logarithmic region and the outer layers skewness factors became negative. 
Comte-Bellot [27] has noted that a substantial error i n  the measurements 
of the odd-order moments i n  high intensity turbulence could come from the 
neglect of the thermal inertia of the wire. Therefore we have compared our 
experimental distributions with the theoretical one, Eq. (7.4), on the basis 
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of the moments of order 4 and 6 (flatness and superflatness factors). However, 
in the region where the skewness factor beconies negative, flatness and 
superflatness factor values are usually lower than those permissible by Eq. 
(7.4) for any combination of the free parameters. 

In a certain flow region i n  each of the cross sections investigated both 
flatness factors for the given turbulence intensity k fall wi th in  the range 
permissible by Eq. (7.4) so that the free parameters p,  R, and r could be 
determined. For the cross section A the results are shown in  Fig. 36. The 
resulting correlation coefficients r are much too high and the ratios R = CT, C T ~  

much too low by comparison with the existing data. The comparison of the 
experimental and the theoretical distributions was done on the basis of the 
two flatness factors ( F  and SF) .  The skewness factors calculated from the 
distribution Eq. (7.4), corresponding to the p, R, and r values found, do not 
agree with the measured ones, h:iving somewhat lower values. This could 
indicate that the probability distributions depend on more than three free 
parameters. 

FIG. 36. Correlation coefficients, r ,  and rms value ratio, u, /u2  of the components 
determined by the analysis. .. i ’; 0, u , / u , .  

All these findings confirm that the result of the amplitude probability 
analysis presented is in fact negative. The initial assumption does not hold- 
the probability distributions of the velocity components in the wall layers 
are not Gaussian. 

However, the procedure introduced by the analysis presented is sound. 
It is only the first assumption on the probability distributions of the velocity 
components which does not hold. This assumption had to be investigated 
before more sophisticated assumptions are introduced. 
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D. PROBABLE FUTURE DEVELOPMENTS 

I t  is extremely worthwhile proceeding with the analysis by introducing 
new assumptions. I n  the case of hot-wire studies of high intensity turbulence 
it is even indispensable a s  otherwise the results of the measurements are 
worthless. The most interesting feature of the analysis is however the possi- 
bility of obtaining information on the probability distributions of the 
velocity components. This information would be of greatest interest for 
further studies of the structure of wall turbulence. 

Two possible lines of attack for a further analysis have already been 
suggested by other investigators. The first would be based on the Cameron- 
Martin-Weiner method of investigating a nonlinear random process by 
expanding it in  an infinite series, in which the first term is an exact Gaussian 
process and the higher order ternis contribute successive corrections [ I  I ,  
121. This method would then provide guidance for the more sophisticated 
assumptions regarding the probability distributions of the velocity com- 
ponents. The other approach was initiated by the results of the studies in  
Stanford [65], and consists of representing shear flow turbulence as a random 
superposition of appropriate characteristic waves. This approach, introduced 
by Luniley, was tested experimentally by Bakewell [51] and by Hussain and 
Reynolds [ 131, using two diflerent procedures. 

In  order to establish a physical basis for the choice of a possible approach 
to further analysis, preliniinary calculations of the autocorrelation functions 
of some of the registered signals have been made. The maximum lag number 
chosen was u = 400, corresponding to the maxitnuni displacement of 
7,,,, = SO msec. The autocorrelation function for a signal corresponding to 
J!+ = 2.2 in  cross section D for flow w i t h  Re = 36,000 is presented in Fig. 
37. Note that the autocorrelation function is fairly smooth up to the time 
lag of approximately T = 7 nisec, corresponding to 7 +  = T U + ~ , ' \ ~  = 110, in  
agreement with the findings of other researchers, a s  for instance Van Thinh 
[55]  who has not in fact exceeded the time lag of  7 +  = 80. I t  is for time lags 
exceeding T +  = I10 that the ailtocorrelation function begins to show wavy 
behavior. For time lags 7 > 5 tnsec the autocorrelation function is presented 
in the upper part of Fig. 37 in a larger scale. The wavy behavior persist up 
to T~~~~ = 50 tnsec, although the region for T > 25 msec is not shown in 
Fig. 37. These findings are in accordance with the results of  Bakewell [S I ]  
and Kim ct  ul. [52] who have used glycerine and water, respectively, as 
working fluids. 

The velocity spectra obtained by a Fourier cosine transform of the auto- 
correlation function presented in Fig. 37 are shown in Fig. 38, along with 
the spectra corresponding to y +  = 5.2 and y+  = 14.7, in the same cross 
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5 

FIG. 37. Autocorrelation function. Cross section D, Re = 36,000, y +  = 2.2. 

section. The equivalent bandwidth, corresponding to the maximum displace- 
ment T , , , ~ ~  = 50 msec, was Be = I / T , , , ~ ~  = 20 Hz. Peaks in the spectra cor- 
respond to the waves of the autocorrelation function. Similar peaks in the 
spectra were found by Bakewell [5 I ] .  

A harmonic analysis of the autocorrelation functions looks very promising 
We are proceeding with this analysis using larger lag numbers. The analysis 
however required much computer time. An attempt is being made to interpret 
the probability 'distributions of the velocity vector module, as measured by 
a hot wire, by a superposition of the Gaussian distributions and the proba- 
bility distribution of the waves, using both amplitude probability density 
and autocorrelation function measurements. 

VIII. Concluding Remarks 

The brief review of the existing prediction procedures indicates that no 
real progress can be made without a better understanding of the physics of 
turbulence phenomena. At present there are more investigators who make 
predictions than those who supply experimental evidence to support those 
predictions. It is much easier to perform computer experiments then to do 
experimental work in wall turbulence. However, it is always dangerous to 
construct beautiful theoretical structures on the basis of thin and not very 



346 Z .  ZARIC 

FIG. 38. One-dimensional spectra. Cross section D, Re = 36,000. 0, .v+ = 2.2; 
A, y+ = 5.2; O , y +  = 14.7. 

reliable experimental evidence. And the experimental evidence in wall 
turbulence is thin and unreliable. 

Wall turbulence is a complex, random phenomenon. Therefore, the best 
chances for success have physical models based on statistical theory. Con- 
sequently, experimental evidence on which these models have to be built has 
to be obtained by statistical methods. Experimental techniques presently in 
use in wall turbulence studies are not well suited for this. Either these tech- 
niques are essentially inadequate for the statistical analysis, as in the case of 
visual methods, or the statistical analysis has not been applied in  the process 
of data acquisition, as in case of the hot-wire technique. Quantitative visual 
techniques have already revealed unknown features of wall-turbulence 
structure. Their role in this respect is unquestionable. It is also probable 
that visual techniques could greatly help hot-wire or optical methods in 
becoming reliable tools of a real statistical analysis of the wall turbulence. 

A wall turbulence experimental study, in isothermal and nonisothermal 
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conditions, has been presented. The aim of the study was to obtain as much 
statistical information in the wall layers as possible with the available tech- 
nique. It is found that without a statistical analysis the data obtained are 
of only qualitative value. Even the determination of mean flow parameters 
in the wall layers from nonstatistical measurements is of a questionable 
reliability. This is especially true in the case of nonisothermal flows. 

A statistical analysis of the velocity signal in isothermal flow was attempted 
on the basis of simplified assumptions. I t  revealed that a single-wire probe 
signal statistically analysed contains more information then what is usually 
supposed. By this analysis, it was proved that the probability distributions of 
the velocity components are non-Gaussian. This result could be expected 
but it does not follow directly from the measured values of the higher order 
statistical moments. Another conclusion of the analysis is far more important: 
it follows that by applying a similar analysis, based on more realistic assump- 
tions, probability distributions of the components could be determined, 
along with the corresponding correlation coefficients. 

A complete statistical description consists of the probability distribution 
and the autocorrelation function determination. Preliminary results of the 
autocorrelation function measurements were presented. It turns out that if 
a sufficient time lag is allowed the waves detected in visua! studies make 
their appearance in the autocorrelation functions. The “bursts,” then, are 
responsible for the skewness of the probability distributions. It follows that 
no information is lost by lengthy time-averaging, only this time-averaging 
has to be done properly, and statistically. A coupled time and amplitude 
statistical analysis thus provides a powerful tool in wall turbulence studies. 

The analysis could be extended to the three-dimensional case. It could 
also be extended to nonisothermal flows. In fact, a nonstatistical treatment 
of the temperature fluctuations is purely formal and without real meaning. 
The probability that this could be done by the hot-wire technique alone is 
slight. A combination of techniques seems necessary. 
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Dorfman’s method, 74 
Double correlations, of temperature and 

Drag, 99 

42 

velocity components, 305 

effect of roughness on, 112 
influence of free stream turbulence on, 

influence of heating on, 101 
influence of Reynolds number on, 102, 

influence of surface roughness on, 103 
in tube banks, 106, 1 1  1 
single tubes, 100 
convective heat transfer in, 33 

103 

103 

Duhamel’s principle, 78 

E 

Eigenfunction expansions, 66 
Einstein coefficients, 232 
Electric analogy, 11  1 
Elliptical channel, 44 
Elliptical equations, 13 
Elsasser model, 237 
Energy equation, 8, 21, 27, 43, 67, 71 

for radiatively participating gas, 246 
for transient conditions, 25 

Entrance lengths, 32, 33 
Entropy, 23 

minimum production of, 23 
production of, 21 

Equations of transfer, for local thermo- 

Equilibrium flow, 8 
Euler-Lagrange equation, 27 
Euler number, 150 
Euler’s transformation, 15 
Exponential integral, 250 

dynamic nonequilibrium, 248 
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Exponential Kernel approximations, 25 I ,  

External problems, 161 
252 

F 

Fins, 32 
Flash photolysis, use of, in velocity 

measurements, 298 
Flatness factor, 237-332, 340 
Flat plate 

flow of transformer oil over a, 115 
glycerine flow over a, 115 
heat transfer in laminar flow, 115 
influence of heating or cooling on heat 

transfer, 115 
influence of Prandtl number on  heat 

transfer, 115 
velocity and temperature measure- 

ments for  turbulent flow over, 
305 

Flow regimes, in tube banks, 107 
Fluid properties 

influence of, on heat transfer, 112 
influence of, in heat transfer to liquids, 

128 
Forced convection, 22 
Form parameters, 319, 324 
Fourier transform, 50 
Fredholrn integral equation, 35 
Free convection, 11, 19, 53 
Free convection effects, 127 
Free stream turbulence level, influence 

of, on heat transfer, 122, 123 
Free stream turbulence, influence of, on 

heat transfer in tube banks, 134 
Free turbulence, 291 
Freezing, 49 
Friction velocity, 3 19 
Fundamental band, 23 1 

G 

Gas flows, 94 
Gaussian distribution, 335 
Geophysical applications, 66 

Graetz problem, 22 
Gray gas, 259 
Green’s function. 53 

H 

Harmonic equation, 42 
Harmonic oscillator, 232 

vibrational nonequilibrium in, 248 
Hartree flow, 21 
Heat conduction, 23, 29, 45, 48, 66, 67, 

77 
in prismatic bar, 49 
solution by Wiener-Hopf method, 49, 

50 
unsteady, 57 

Heat conductivity, of rocks and soils, 45 
Heat exchangers, 144, 150, 157 
Heat shields, 11 
Heat transfer 

in noncircular ducts, 44 
in separated regions, 120 
measurement of, in turbulent flows, 

natural convection in rectangular 
293 

cavities, 179 
Horizontal circular cylinders 

flow patterns for natural convection 
inside, 212 

governing equations for natural con- 
vection inside, 197 

influence of initial conditions on na- 
tural convection inside, 223 

influence of thermal boundary condi- 
tions on natural convection in- 
side, 216, 217 

natural convection experiments using 
silicone oil, 211 

natural convection inside, 196 
streamline patterns for  natural con- 

vection inside, 206-208, 216-219, 
220, 221 

temperature profile for natural convec- 
tion inside, 204, 205, 211, 212, 
217, 219, 220, 222 

velocity profiles for natural convec- 
tion inside, 204, 205, 209, 211, 
217-219, 221, 222 
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Hot-film sensors, 293 
Hot-wire anemometers, 292, 293 

calibration procedures in, 294 
influence of nonisothermal flow on, 

influence of turbulence intensity on, 

influence of wire length on, 294 
statistical analysis of signals from, 336 

in, 164, 165, 167, 169, 172 

294 

295 

Hot wire-cold wire method, 310 
Hot wire probes 

aging of, 312 
calibration of, 3 12, 3 13 
construction of, 3 11 
cross-wire probes, 296 
electronic circuit of, 311 
sensitivity of, to flow direction, 296 
time constant of, 296 
wall effects on, 296 

Hydraulic resistance, 150 
calculation of, in tube banks, 154 
influence of Reynolds number on, 151 
influence of tube pitch on, 152 
in in-line tube banks, 153 
in staggered tube banks, 152, 153 
in tube banks, 151 

Hydrogen bubble technique, 297 
Hyperbolic equations, 53 
Hypersonic nozzles, 11 

1 

Ideal fluids, 95 
Infinite horizontal plates, natural con- 

Infrared emission, 230 
Infrared radiating gas, temperature pro- 

files in, 254 
Infrared radiation, 229 
Infrared spectrum, 23 1 
Injection, 12, 40 
In-line tube banks, 136, 137, 139-141, 

vection between, 165 

143, 145, 146 
hydraulic resistance in, 151, 153 
pressure drop coefficients, 154 

Inner expansion, 7 
Integral equations, 34 

Integral methods, 116, 163, 287 
Interferometry, 176, 178, 179 
Internal flows, 162 

effect of viscous dissipation in, 162 
influence of body forces on, 162 
thermal instabilities in, 162 

Internal problems, 16 1 
Inviscid flows, 13 
Iteration, 28, 35 

J 

Jacobi-elliptic integral, 47 
Joint probability density distribution, 

337, 341 

K 

King’s law, 294 

L 

Lagrangian thermodynamics, 23 
Laguerre polynomials, 69 
Laminar flow, in a circular tube, 22 
Laminarization, 320 
Langer’s transformation, 21 
Laplace transform, 38, 50 
Large path length limit, 253, 257, 264 
Laser-Doppler method, 298, 342 
Line broadening, 23 1 
Line intensity, 232 

Liouville’s differential equation, 20 
Liquid metals, 70 
Liquids 

variation of, with wavenumber, 233 

flow of, over single tubes, 128 
heat transfer in, 128 

forward stagnation point, 11 8 
influence of wall temperature distribu- 

tion on, 126 
to flat plates, 116 
to single tubes, 116 
to wedge-shaped bodies, 117 

Local heat transfer 
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Lorentz line profile, 232 
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influence of pressure on, 232 

M 

Mach-Zehnder interferometer, 167, 273 
Matched asymptotic expansions, 7, 214 
Matching, 10 
Mathematical methods, 1 
Matrix algebra, 62 
Mean heat transfer, 126, 138 

Mean heat transfer coefficients, calcu- 

Mean line width, 243 
temperature effect on, 243 

Meksyn’s method, 14 
Mellin transformation, 3 7 4 0  
Melting, 30, 31, 34, 75 
Melting cylindrical tube, 6 
Melting slab, 4 
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in tube banks, 138 

lation of, 127 

radiation-conduction interaction in, 

radiative transfer in, 259, 261 
Method of steepest descent, 253 
Method of characteristics, 53, 54 
Method of  intermediate limits, 13 
Method of multiple scales, 12 
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MHD channel flow, 56 
Mixing length, 288 
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Momentum equation, 8, 27, 43, 67 
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for turbulent boundary layers, 288 

N 

Natural convection, 11, 12, 15, 161 
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in a closed-end tube, 162, 163 
in confined channels, 162 
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plates, 165 
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in rotating cylinders, 164 
in spherical cavities, 164 
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Noncircular ducts 

Nonequilibrium, 250 
Nonequilibrium source function, 249 
Nonisothermal flows, 304 
Nonlinear problems, 40 
Nonoverlapping line limit, 236 
Numerical stability, 172 
Nusselt numbers 

for natural convection in closed-end 
tubes, 164 

for natural convection in rectangular 
cavities, 179-183, 195, 196 

for natural convection inside square 
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influence of aspect ratio on, 184 

0 

Onsager’s reciprocity relations, 25 
Optically thick limit, 252, 253, 264 
Optically thick radiation, 257, 258 
Optically thin limit, 235, 252, 254, 256, 

influence of thermodynamic nonequi- 
263, 265 

librium on, 252, 258 
Optical thickness, 12 
Oscillators, rate of change of vibration 

Oseen constants 
energy in system of, 247 

for natural convection inside hori- 
zontal circular cylinders, 203 

influence of, o n  temperature profiles, 
208 

Oseen method, 170, 172, 199, 214 
Outer expansions, 7 
Overtone bands, 231 

P 

Parabolic equations, 13, 57 
Paraffin, natural convection to, inside 

196 rectangular cavities, 184 
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Penetration depth, 24 
Perelman's method, 37 
Perturbation methods, 3 

coordinate perturbation, 3 
parameter perturbation, 3 
regular perturbation, 3 
singular perturbation, 3 

Perturbation solutions, 67 
Phase change, 24, 29, 75 
Planck mean coefficient, 259 
PLK method, 3 
Poiseuille flow, 29 
Polyatomic molecules, 23 1 
Porous media, 29 
Power series, 13 
Prandtl number, influence of,  on heat 

transfer to tubes and tube banks, 
112 

Pressure broadening, 23 1 
Pressure coefficient, 107 
Pressure drop coefficients, in tube banks, 

Pressure gradient flows, 305 
Pressure path length, 235 
Prismatic bars, conduction in, 49 
Probability density distribution, 296, 337, 

154 

338 
of temperature, 325, 326, 329 
of velocity, 325, 326, 339, 342 

Probability distribution, comparison of, 
for temperature and velocity mea- 
surements, 332, 333 

R 

Radiation, 1 1 ,  12, 34, 66 
application of Duhamel's principle to, 

78 
Radiation-conduction interaction, 264 

comparison between optically thin 
limit and large path length limit, 
267 

in carbon dioxide, 266, 267 
in carbon monoxide, 266, 267 
in methane, 266, 267 
in water vapor, 266, 267 

Radiatively participating gas, energy 

Radiative equilibrium, 250, 277 
equation for, 246 

Radiative flux equations, 250, 252 
Radiative flux vector, 246 
Radiative heat flux, 279 

Radiative lifetime, 249 
Radiative transfer, 255 

comparison of, for several gases, 280 

in carbon dioxide, 256, 259, 260 
in methane, 256, 259, 261 
in water vapor, 256, 259, 261 

Radiative transfer equations, 70 
Rayleigh number, 161, 166 

Rectangular cavities, 166, 174 
critical value of, 165 

boundary layer regime in, 177 
centerline temperatures for free con- 

vection in, 178 
conduction regime in, 177 
dimensionless parameters for  free con- 

vection in, 176 
flow oscillations for natural convec- 

tion in, 189 
influence of horizontal partitions on 

free convection in, 182 
Nusselt numbers for natural convec- 

tion in, 195, 196 
secondary flows for natural convection 

in, 189 
streamline patterns for natural convec- 

tion in, 189 
temperature profile for natural convec- 

tion in, 176 
tertiary flows for natural convection 

in, 190, 191 
transition regime in, 177 
velocity profiles for natural convec- 

tion in, 176 
Rectangular ducts, 70 
Rectangular slot, natural convection in, 

Reference temperature, 95, 113 
168, 169 

use of, for heat transfer to single 
tubes and tube banks, 113 

Regular perturbation, 3 
Regular regime, 67 
Resistance thermometers, 299 
Reynolds number, influence of, on flow 

around cylinders, 97 
Reynolds number effects, 121 
Reynolds stress, 288 
Rigid-rotor approximations, 233 
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Ritz method, 28 
Rosenzweig’s matching technique, 70 
Rosseland approximation, 264 
Rosseland limit, 252, 253 
Rotating disk, 22 
Rotating cylinder, 164 
Rotational quantum number, 232 
Rotational transitions, 23 I 
Roughness, 103 
Round disks, 24  

240 

S 

Schwartz-Christoffel transformation, 45, 

for natural convection inside rec- 

for natural convection inside rec- 

46  

tangular cavities, 189 

tangular channels, 193 
Semi-infinite solid, 24 
Separation, 96 

heat transfer at, 120 
influence of Reynolds number on ,  98 
in tube banks, 110 

Separation point, 97 
Series inversion, 14 
Series truncation, 13 
Shear stress distribution, 303 
Shock wave-boundary layer interaction, 

11 
Silicone oil 

experiments with, in horizontal cir- 

natural convection to, in rectangular 
cular cylinders, 2 1 1 

cavities, 184 
Similarity regime, 163 
Similarity theory, 94 
Simultaneous heat and mass trawfer. 62 
Single band gas, 258 
Single tubes, 94 

boundary layer on, 96 
combined free and forced convections, 

constant surface temperature, 119 
cross flow of air in, 113 
cross flow of oil in, 113 
cross flow of water in, 113 

12’7 

distribution of skin friction around, 

drag coefficient for flow around, 102 
experimental velocity distribution 

around, 99  
flow pattern around, 95 
gas flows around, 94 
heat transfer to, 94, 112, 116 
heat transfer to air flow over, 124, 

heat transfer to oil flow over, 124, 129 
influence of blockage ratio on  heat 

transfer to, 132 
influence of blockage ratio in flow 

around, 103 
influence of heating or cooling on 

heat transfer to, 129 
local heat transfer on, 116, 119 
local Nusselt numbers on, 116 
mean heat transfer to, 126 
pressure distribution around, 96 
separation point on, 97, 100, 101 
turbulent boundary layer on,  97 
wake regime, 98 

102 

127, 129 

Singularities, 3 
Singular perturbation, 3 
Skewness factor, 329-332, 340 
Slip, 95 
Slug flow, 54 
Solidification, 35 
Sources, 15 
Species equation, 8, 27 
Spectral absorption coefficient, 23 1 
Spectral band absorptance, 235. 240, 

Spectral lines, 231 
half-width of, 232 
spacing of, 233 
>trong overlapping lines, 236 
variation of intensity with rotational 

variation with pressure and temper- 

24 1 

quantum number, 232 

ature, 232 
Spectral radiative flux, 250 
Spheres, 12 
Square cavities 

natural convection inside, 188 
Nusselt numbers for natural convec- 

tion in, 194, 195 



366 SUBJECT INDEX 

Staggered tube banks, 135, 136, 139, 
140, 142, 144, 146 

heat transfer in, 116 
hydraulic resistance in, 15 1-153 
influence of Reynolds number in, 110 
pressure drop coefficients, 155 
separation points in, 110 

Stagnation point, 7, 19 
Stanton number, 306 

increase in, due to turbulization, 306 
measured values of, in pressure gradi- 

ent flows, 306, 307, 319 
Statistical analysis, 335 

Statistical models, 290 
Steepest descent, 14 
Streamlines 

of hot wire signals, 336 

for natural convection inside hori- 
zontal circular cylinders, 206-208, 
211, 216-222 

for natural convection inside rec- 

Streamwise velocity component, RMS 

Stretched coordinates, 12 
Strong nonoverlapping line limit, 239, 

Strouhal number, 98, 99 

tangular cavities, 189 

values of, in turbulent flows, 302 

242 

dependence of, on Reynolds number, 
99 

Sturm-Liouville equation, 68 
Subcritical flow regime, 136, 142 
Supercritical flow regime, 97 
Sublimation, 19 
Substitute kernel method, 34 
Superflatness factor, 329, 330, 332 
Superskewness factor, 329, 330, 332 
Supersonic flow, 53 
Surface emittance, 262 

262, 263 
Surface radiosity, 250, 264 
Surface roughness, 145 

influence on radiative transfer in gases, 

Taylor series, 34 
Temperature 

measurements 
316, 318 

T 

of, in turbulent flows, 

measurement of, simultaneous with 
velocity, 309, 310 

Temperature continuity, 253 
Temperature distribution, for free con- 

vection in rectangular cavities, 166 
Temperature flatness factor, 334 
Temperature fluctuation 

for turbulent flows with pressure 

in turbulent boundary layer on a flat 
gradient, 325 

plate, 305 
Temperature measurements 

correlation to, due to conduction, 317 
in turbulent flows, 299 

comparison of various methods for 
determining values of, in turbu- 
lent flow, 334 

comparison of, with velocity profiles, 
334 

for free convection between vertical 
isothermal plates, 167 

for free convection in rectangular slot, 
168 

for free convection inside horizontal 
cylinders, 167 

for natural convection in enclosed 
cavities, 17 1 

for natural convection inside hori- 
zontal circular cylinders, 170, 
204, 205, 211, 212, 217, 219-222 

for natural convection in rectangular 
cavities, 176, 182-185, 191, 192 

for radiative equilibrium in gases, 279 
for turbulent flows with pressure 

within an infrared radiating gas, 254 

Temperature profiles 

gradient, 322, 324 

Temperature skewness factor, 333 
Temperature slip, 257 
Temperature spectra, 305 
Tertiary flows, 190 

for natural convection inside rec- 
tangular cavities, 190, 191 

Thermal boundary conditions, influence 
of, on natural convection inside 
cavities, 172 

Thermal boundary layers, 14 
influence of Prandtl number on, 35 

Thermal instabilities, 162, 165, 169, 212 
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for natural convection inside hori- 
zontal circular cylinders, 223 

Thermal potential, 23 
Thermodynamics, 23 
Thermodynamic equilibrium, departures 

from. due to radiation, 246 
Thermodynamic nonequilibrium 

effects of, o n  conduction-radiation 
interaction, 277 

for radiation in carbon monoxide, 
273-276 

for  radiation in diatomic gases, 275 
for  radiation in single band gases, 274, 

275 
in gaseous radiation, 273 

Total band absorptance, 234, 235, 241, 
243 

general correlations for, 244, 24.5 
limiting forms of, 239 
limiting solution of, by rigid-rotor, 

harmonic-oscillator band model, 
242, 243 

limiting values of, 235, 236 
square root limit of, 239 

model, 238, 239, 240 
Total band absorption, for Elsasser band 

Total band intensity, 233 
Trailing function, 25 
Transducers, 292, 293 
Transition, 97, 141 
Transition regime, for natural convection 

inside rectangular cavities, 18 1 
Transpiration, 32 
Triangular channels, 44 
Triple correlations, 289 

nents, 305 
of temperature and velocity conipo- 

Tube banks 
calculation of hydraulic resistance in, 

closely spaced geometries, 147 
combined free and forced convection, 

140 
comparison of available heat transfer 

results in, 148 
comparison of heat transfer to  stag- 

gered and in-line tube banks, 142, 
148 

154 

comparison with single tubes, 134 
critical flow in, 152 

drag in, 106, 11 1 
effect of roughness of heat transfer 

in, 145 
efficiency of, 148 
flow of gases in, 95 
flow of viscous liquids in, 95 
flow pattern in, 105 
flow regimes in, 107 
heat transfer in 94, 112, 141 
heat transfer to, at  high Reynolds 

numbers, 14.5 
heat transfer to, at low Reynolds num- 

bers, 140 
heat transfer to, at  subcritical or 

mixed flow conditions, 142 
hydraulic resistance in, 94, 1.50 
heat transfer to viscous liquids in, 144 
hydraulic resistance of, 150, 151 
influence of number of rows on  heat 

transfer, 156 
influence of pitch on  heat transfer in, 

1 1 1 ,  135, 142, 144, 146 
influence of Reynolds number in, 106 
influence of tube pitch, 108 
influence of turbulence intensity on 

in-line arrangement, 105 
local heat transfer in, 133, 135, 137, 

mean heat transfer in, 138 
Nusselt number calculations for  gas 

optimal arrangement of, 157 
physical properties, influence of, 95 
potential flow through, 11 1 
pressure coefficient in, 107, 108 
relative efficiency of in-line and stag- 

gered tube banks, 157 
staggered arrangement, 105 
transition in, 141, 152 
velocity distribution in, 107 

Tube flow, 22, 29 
Tubes, natural convection in, 163 
Turbulence, 285 

heat transfer in, 134 

138 

flow through, 156 

as a statistical phenomenon, 286 
energy diffusion in, 289 
energy dissipation in, 289 
energy generation in, 289 
experimental methods in, 292 
influence of, on  heat transfer, 290 
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in grids, 291 
kinetic energy of, 288, 289 
length scales in, 289 
near walls, 29 1 
statistical model of, 290 
wave approach to study of, 344 

Turbulence energy production, 303 
Turbulence intensities, comparison of, for 

isothermal and nonisothermal tur- 
bulent flows, 323 

Turbulence intensities, 122, 138 
Turbulence intensity 

influence of, on heat transfer, 138, 140 
measurements of, for turbulent 

measurement of, in pressure gradient 

influence of, in hot-wire anenionietry, 

Turbulence intensity distributions, ex- 

Turbulence level, influence of, on  flow 

Turbulent boundary layers, 35 
Turbulent flows 

channnel flow, 321 

flow, 308, 309 

295 

perimental measurements of, 302 
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comparison of nonisothermal and iso- 
thermal conditions, 323 
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pressure, gradient conditions, 299 

for nonisothermal conditions, 305 
momentum equations for, 288 
prediction methods for, 287 
simultaneous measurement of velocity 

and temperature in, 310 
statistical analysis of, 335 
velocity and temperature profiles in, 

334 
Turbulent fluctuations, 287 
Turbulent heat flux, 290 
Turbulent Prandtl number, 290 
Turbulent viscosity, 288 
Turbulization, 305 

U 

Unicellular motion, 185 
Uniform heat sources, in radiating gases, 

Unstretched coordinates, 12 
254, 255 

V 

Variable surface temperature, 126 
Variable wall temperature, 35, 163, 164 
Variational calculus, 32 
Variational methods, 22 

Velocity 
based on local potentials, 26 

comparison of various methods for  
determining values of, 328, 329 

measurement of, by laser-Doppler 
method, 298 

measurement of, by visual techniques, 
297 

measurement of, in turbulent flows, 
292 

measurements of, in turbulent pres- 
sure gradient flows, 320 

measurement of, near a wall in tur- 
bulent flows, 314, 316 

measurement of, simultaneous with 
measurement of temperature, 309, 
3 10 

Velocity profiles 
comparison of, for  isothermal and 

nonisothermal turbulent flows, 
323 

comparison of various methods for 
determining values of, in tur- 
bulent flows, 334 

experimental measurements of, in 

for  

for  

for 
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for  

pressure gradient flows, 307 
free convection inside horizontal 
cylinders, 167 
natural convection in enclosed 
cavities, 171 
natural convection inside circular 
cylinders, 170, 204, 205 
natural convection inside hori- 
zontal circular cylinders, 209, 21 I ,  
217-219, 221, 222 
natural convection in rectangular 
cavities, 176, 184-186, 191, 192 

for nonisothermal turbulent flows with 

measurement of, in turbulent pipe 
pressure gradient, 322 

flow, 303 
Velocity spectra, 346 
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Vibrational nonequilibrium, 248, 250 
Vibrational relaxation time, 247, 248 
Vibrational transitions, 23 1 

Vibration-rotation bands, 230, 231 
Vibrations, 99 
Volumetric absorption coefficient, 232 

variation of, over entire band, 234 
Viscosity, influence of, on  heat transfer 

Viscous dissipation, 162 
Visual techniques, 297 

natural convection between, 165, 166 

to tubes and tube banks, 114 

hydrogen bubble technique, 297 
use of, in velocity measurements, 297 
use of, for velocity profile measure- 

ments, 303 
Volterra integral equation, 38 
Volume dissipation function, 23 
Von-Misses transformation, 74 
Vorticity, 165, 166, 170 
Vortex shedding, 98 
Vortices, 96, 97 

shedding of, 99 
vibrations due to, 99 

369 

w 

Wakes, 98 
influence of Reynolds number on, 98 
symmetrical regime in, 98 
velocity fluctuations in, 98 

in turbulence measurements, 296, 297 
measurements of, 315 
on probability density distributions, 

Wall shear stress, fluctuations in, 293 
Wall turbulence, 304 

Wall effects, 314 
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experimental measurements of, 300, 
301 

Water vapor 
radiation-conduction interaction in, 

radiative transfer in, 256, 259, 260 
rotation bands in, 231 

266, 267, 270, 272 

Wavenumber, 232 
Wedge flows, 35 
Wedge-shaped bodies, 117 
Weighted residuals, 32 
Wiener-Hopf method, 49 
Wires, 127 
WKBJ method, 19 
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